Math, asked by majinaranchandra, 2 months ago

8. Meenal lends * 75,000 at C.I. for 3 years. If
the rate of interest for the first two years is
15% per year and for the third year it is 16%,
calculate the sum Meenal will get at the end
of the third year in s.i​

Answers

Answered by ImperialGladiator
30

Answer :

₹115057.5

Explanation :

We know that, any amount calculated for respective years we use the formula :

 \sf \: Amount  = p \bigg( 1 +  \dfrac{r_1}{100}  \bigg) \bigg(1 +  \dfrac{r_2}{100}  \bigg)

Where, \sf r_1 \: \& \: r_2 are the rate of first 2 years respectively.

Here, the sum of 75,000 is to be calculated for 3 years at the rate of 15% for the first 2 years and 16% for the 3rd year.

Calculating the amount for 3rd year by,

 \sf \: Amount  = p \bigg( 1 +  \dfrac{r_1}{100}  \bigg) \bigg(1 +  \dfrac{r_2}{100}  \bigg)\bigg(1 + \dfrac{r_3}{100}\bigg)

Where,

  • p(principal) = 75,000
  • \sf r_1 \: \& \: r_2 = 15%
  • \sf r_3 = 16%

By the given values,

\sf \longrightarrow \: 75000 \bigg(1 +  \dfrac{15}{100} \bigg)\bigg(1 +  \dfrac{15}{100} \bigg)\bigg(1 +  \dfrac{16}{100} \bigg) \\

\sf \longrightarrow \: 75000\bigg(1 +  \dfrac{3}{20} \bigg)\bigg(1 +  \dfrac{3}{20} \bigg)\bigg(1 +  \dfrac{4}{25} \bigg) \\

\sf \longrightarrow \: 75000\bigg( \frac{23}{20} \bigg)\bigg( \frac{23}{20} \bigg)\bigg( \frac{29}{25} \bigg) \\

\sf \longrightarrow 115057.5

Amount for the 3rd year is 115057.5

Answered by ItzCutePrince1946
96

\small\tt\red{Interest\;for\;the\;first\:year\;}

\tt\red{\implies{ \frac{P\times R \times T}{100} }}

\tt\red{\implies{ \frac{75,000 \times 15 \times 1}{100} }} \tt\red{=Rs.\;11,250}

\small\tt\red{Amount\;of\;first\;year}

\small\tt\red{\implies\;Rs.\;75,000+Rs.\;3,000=Rs.\;86,250}

\tt\red{Interest\;for\;the\; second\:year\;}

\tt\red{\implies{ \frac{P\times R \times T}{100} }}

 \tt\red{\implies{ \frac{86,250\times 15 \times 1}{100} }} \tt\red{=Rs.\;12,937.5}

\tt\red{Amount\;of\; second\;year}

\small\tt\red{\implies\;Rs.\;86,250+Rs.\;12,937.5=Rs.\;99,187.5}

\tt\red{Interest\;for\;the\; third\:year\;}

\tt\red{\implies{ \frac{P\times R \times T}{100} }}

 \tt\red{\implies{ \frac{99,187.5\times 15 \times 1}{100} }} \tt\red{=Rs.\;15,870}

\tt\red{Amount\;of\; third\;year}

\small\tt\red{\implies\;Rs.\;99,187.5+Rs.\;15,870=Rs.\;1,115,057.5}

Hence, the sum meenal.will get at the end third year is Rs.1,115,057.5

 \\ \\ \\

Happy Learning :D

Similar questions