8.
...ormula...
a.
related is
State True or False:
The number or value can be used in calculations.
b. Data is organized horizontally in column and vertically in rows.
Excel opens the Pivot table field list on a same worksheet.
d.
Row label field show as row label down the left side of Pivot table.
Field list button helps to change the way of the Pivot Table.
f.
By clicking on 'refresh button' helps to see the edited source data.
(aug
(falls
( )
(
)
)
C.
e.
resulting
Answers
Explanation:
King
\begin{gathered}\begin{gathered}\sf \large \red{\underline{ Question:-}}\\\\\end{gathered}\end{gathered}
Question:−
5. The measures of two adjacent angles of a parallelogram are in the ratio 3:2. Find the measure of each of the angles of the parallelogram.
\begin{gathered}\begin{gathered}\\\\\sf \large \red{\underline{Given:-}}\\\\\end{gathered}\end{gathered}
Given:−
The measures of two adjacent angles of a parallelogram are in the ratio 3:2.
\begin{gathered}\begin{gathered}\\\\\sf \large \red{\underline{To \: Find:-}}\\\\\end{gathered}\end{gathered}
ToFind:−
Find the measure of each of the angles of the parallelogram.
\begin{gathered}\begin{gathered}\\\\\sf \large \red{\underline{Solution :- }}\\\\\end{gathered}\end{gathered}
Solution:−
\text{ \sf suppose the angles be equal to 3x and 2x} suppose the angles be equal to 3x and 2x
\boxed{ \sf \orange{ we \: have \: ardjacent \: angles \: of \: a \: parallelogram \: = 180}}
wehaveardjacentanglesofaparallelogram=180
\begin{gathered}\begin{gathered}\\ \sf \underline{ \green{putting \: all \: values : }}\end{gathered}\end{gathered}
puttingallvalues:
\begin{gathered}\begin{gathered}\: \\ \sf \to \: 3x + 2 x = 180\: \\ \\ \sf \to \: \: \: \: \: \: \: \: \: \: \:5x = 180 \\ \\ \: \sf \to \: \: \: \: \: \: \: \: \: \: \:x \: = \frac{180}{5} \\ \\ \sf \to \: \: \: \: \: \: \: \: \: \: \:x \: = \cancel{ \frac{180}{5} } \\ \\ \sf \to \: \: \: \: \: \: \: \: \: \: \purple{x = 36}\\\\\end{gathered}\end{gathered}
→3x+2x=180
→5x=180
→x=
5
180
→x=
5
180
→x=36
\begin{gathered}\begin{gathered}\sf \to \: 3x \\ \sf \to \: 3 \times 36 \\ \sf \to \red{108 }\\ \\ \\ \sf \to \: 2x \\ \sf \to \: 2 \times 36 \\ \sf \to \orange{72} \\\end{gathered}\end{gathered}
→3x
→3×36
→108
→2x
→2×36
→72
†
\sf \large\underline{ \blue{verification }} \huge \dag
verification
†
\begin{gathered}\begin{gathered}\\ \\ \sf \to 3x + 2x = 180 \\ \\ \sf \to \: 3 \times 36 +2 \times 36 = 180 \\ \\ \sf \to \: 108 + 72 = 180 \\ \\ \sf \to \:180 = 180 \\ \\ \large \underline{ \pink{ \sf \: hence \: verified}} \huge \dag\end{gathered}\end{gathered}
→3x+2x=180
→3×36+2×36=180
→108+72=180
→180=180
henceverified
†
Answer:
oops didn't understand what are you trying to ask