Math, asked by samirdaskmg32, 9 months ago

8 (p – 3)^3+ 343 factorise it fast please​

Answers

Answered by Anonymous
0

Answer:

Step-by-step explanation:

8(p-3)3-343  

Final result :

 (4p2 - 10p + 43) • (2p - 13)

Step by step solution :

Step  1  :

Equation at the end of step  1  :

 8 • (p - 3)3 -  343

Step  2  :

2.1     Evaluate :  (p-3)3   =    p3-9p2+27p-27  

Checking for a perfect cube :

2.2    8p3-72p2+216p-559  is not a perfect cube

Trying to factor by pulling out :

2.3      Factoring:  8p3-72p2+216p-559  

Thoughtfully split the expression at hand into groups, each group having two terms :

Group 1:  8p3-559  

Group 2:  -72p2+216p  

Pull out from each group separately :

Group 1:   (8p3-559) • (1)

Group 2:   (p-3) • (-72p)

Bad news !! Factoring by pulling out fails :

The groups have no common factor and can not be added up to form a multiplication.

Polynomial Roots Calculator :

2.4    Find roots (zeroes) of :       F(p) = 8p3-72p2+216p-559

Polynomial Roots Calculator is a set of methods aimed at finding values of  p  for which   F(p)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  p  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  8  and the Trailing Constant is  -559.

The factor(s) are:

of the Leading Coefficient :  1,2 ,4 ,8

of the Trailing Constant :  1 ,13 ,43 ,559

Let us test ....

  P    Q    P/Q    F(P/Q)     Divisor

     -1       1        -1.00        -855.00      

     -1       2        -0.50        -686.00      

     -1       4        -0.25        -617.63      

     -1       8        -0.13        -587.14      

     -13       1       -13.00       -33111.00      

     -13       2        -6.50       -7202.00      

     -13       4        -3.25       -2296.13      

     -13       8        -1.63       -1134.45      

     -43       1       -43.00       -779031.00      

     -43       2       -21.50       -117992.00      

     -43       4       -10.75       -21139.88      

     -43       8        -5.38       -5042.42      

     -559       1       -559.00       -1420034967.00      

     -559       2       -279.50       -180362468.00      

     -559       4       -139.75       -23271519.38      

     -559       8       -69.88       -3096519.36      

     1       1        1.00        -407.00      

     1       2        0.50        -468.00      

     1       4        0.25        -509.38      

     1       8        0.13        -533.11      

     13       1        13.00        7657.00      

     13       2        6.50        0.00      2p-13  

     13       4        3.25        -342.88      

     13       8        1.63        -363.80      

     43       1        43.00       511657.00      

     43       2        21.50       50310.00      

     43       4        10.75        3380.88      

     43       8        5.38        -235.83      

     559       1       559.00       1375036585.00      

     559       2       279.50       169112034.00      

     559       4       139.75       20458072.38      

     559       8        69.88       2392319.11      

The Factor Theorem states that if P/Q is root of a polynomial then this polynomial can be divided by q*x-p Note that q and p originate from P/Q reduced to its lowest terms

In our case this means that

  8p3-72p2+216p-559  

can be divided with  2p-13  

Polynomial Long Division :

2.5    Polynomial Long Division

Dividing :  8p3-72p2+216p-559  

                             ("Dividend")

By         :    2p-13    ("Divisor")

dividend     8p3  -  72p2  +  216p  -  559  

- divisor  * 4p2     8p3  -  52p2          

remainder      -  20p2  +  216p  -  559  

- divisor  * -10p1      -  20p2  +  130p      

remainder             86p  -  559  

- divisor  * 43p0             86p  -  559  

remainder                0

Quotient :  4p2-10p+43  Remainder:  0  

Trying to factor by splitting the middle term

2.6     Factoring  4p2-10p+43  

The first term is,  4p2  its coefficient is  4 .

The middle term is,  -10p  its coefficient is  -10 .

The last term, "the constant", is  +43  

Step-1 : Multiply the coefficient of the first term by the constant   4 • 43 = 172  

Step-2 : Find two factors of  172  whose sum equals the coefficient of the middle term, which is   -10 .

     -172    +    -1    =    -173  

     -86    +    -2    =    -88  

     -43    +    -4    =    -47  

     -4    +    -43    =    -47  

     -2    +    -86    =    -88  

     -1    +    -172    =    -173  

     1    +    172    =    173  

     2    +    86    =    88  

     4    +    43    =    47  

     43    +    4    =    47  

     86    +    2    =    88  

     172    +    1    =    173  

Observation : No two such factors can be found !!

Conclusion : Trinomial can not be factored

Final result :

 (4p2 - 10p + 43) • (2p - 13)

Answered by Anonymous
5

Answer:

I have done it

Step-by-step explanation:

thank my answers

Similar questions