Math, asked by muratbind1985, 5 months ago

8. Pipe A can fill a tank in 5 hours but another pipe B can empty it in 8 hours. If both pipes opened
together, then how much time take to fill the tank ? ​

Answers

Answered by EliteZeal
75

\underline{\underline{\huge{\gray{\tt{\textbf Answer :-}}}}}

 \:\:

\sf\large\bold{\orange{\underline{\blue{ Given :-}}}}

 \:\:

  • Pipe A can fill a tank in 5 hours

  • Pipe B can empty it in 8 hours

 \:\:

\sf\large\bold{\orange{\underline{\blue{ To \: Find :-}}}}

 \:\:

  • Time required to fill the tank when both the pipe are opened together

 \:\:

\sf\large\bold{\orange{\underline{\blue{ Solution :-}}}}

 \:\:

Let time required to fill the tank when both the pipe are opened together be "x"

 \:\:

 \underline{\bold{\texttt{One hour work of Pipe A :}}}

 \:\:

Given that , Pipe A can fill a tank in 5 hours

 \:\:

 \sf \dfrac { 1 } { 5 }

 \:\:

 \underline{\bold{\texttt{One hour work of Pipe B :}}}

 \:\:

Given that , Pipe B can empty it in 8 hours

 \:\:

 \sf \dfrac { 1 } { 8}

 \:\:

 \underline{\bold{\texttt{One hour work when both pipe are opened :}}}

 \:\:

 \sf \dfrac { 1 } { 5 } - \dfrac { 1 } { 8 }

 \:\:

 \sf \dfrac { 8 - 5 } { 40 }

 \:\:

 \sf \dfrac { 3} { 40 }

 \:\:

 \underline{\bold{\texttt{"x" hour work when both pipe are opened :}}}

 \:\:

 \sf \dfrac { 3} { 40 } \times x = 1

 \:\:

 \sf x = \dfrac { 40 } { 3 }

 \:\:

➨ x ≈ 13.3 hours

 \:\:

  • Hence when both pipes are opened they can fill the tank in approx 13.3 hours

 \:\:

Similar questions
Math, 11 months ago