8. Prove that (1 + tanA - secA) x (1 + tanA + SecA) = 2 tanA
Answers
Answered by
1
Step-by-step explanation:
Using (a+b)(a-b) = a² - b²
LHS =
(1 + tanA - secA) x (1 + tanA + SecA)
= ( 1 + tanA)² - sec²A
= 1 + tan²A + 2tanA - sec²A
Also, sec²A = 1 + tan²A
= 1 + tan²A + 2tanA - 1 - tan²A
= 2tanA = RHS
Hence, proved
Similar questions