Math, asked by john6oppo, 4 days ago

8. Prove that: (a) 2tan50° = tan70° - tan20°​

Answers

Answered by anindyaadhikari13
4

Solution:

To Prove:

 \rm \longrightarrow 2\tan(50^{ \circ} )  = \tan( {70}^{ \circ} ) - \tan( {20}^{ \circ} )

Talking Left Hand Side, we get:

 \rm  = 2\tan(50^{ \circ})

Can be written as:

 \rm  = 2\tan(70^{ \circ} -  {20}^{ \circ} )

We know that:

 \bigstar \underline{ \boxed{ \rm \tan( \alpha -   \beta ) =  \dfrac{ \tan( \alpha ) -  \tan( \beta )  }{1 +  \tan( \alpha ) \cdot \tan( \beta )  }}}

Using this result, we get:

 \rm  = 2 \times \dfrac{\tan({70}^{\circ})-\tan({20}^{\circ})}{1  +  \tan({70}^{\circ})\tan({20}^{\circ}) }

 \rm  = 2 \times \dfrac{\tan({70}^{\circ})-\tan({20}^{\circ})}{1  +  \tan({90}^{\circ} - {20}^{ \circ} )\tan({20}^{\circ}) }

 \rm  = 2 \times \dfrac{\tan({70}^{\circ})-\tan({20}^{\circ})}{1  +  \cot({20}^{ \circ} )\tan({20}^{\circ}) }

 \rm  = 2 \times \dfrac{\tan({70}^{\circ})-\tan({20}^{\circ})}{1  + 1}

 \rm  = 2 \times \dfrac{\tan({70}^{\circ})-\tan({20}^{\circ})}{2}

 \rm  = \tan({70}^{\circ})-\tan({20}^{\circ})

Taking Right Hand Side, we get:

 \rm  = \tan({70}^{\circ})-\tan({20}^{\circ})

We observe that LHS = RHS (Hence Proved)

Learn More:

Sum/Difference Identities.

 \rm1. \: \sin(\alpha+\beta) = \sin(\alpha) \cos(\beta) + \cos(\alpha) \sin(\beta)

 \rm2.\: \cos(\alpha+\beta) = \cos(\alpha) \cos(\beta) -  \sin(\alpha) \sin(\beta)

 \rm 3.\: \tan(\alpha+\beta) = \dfrac{ \tan( \alpha) + \tan( \beta ) }{1 -  \tan( \alpha ) \tan( \beta ) }

 \rm 4. \: \sin(\alpha - \beta) = \sin(\alpha) \cos(\beta) -  \cos(\alpha) \sin(\beta)

 \rm 5.\: \cos(\alpha - \beta) = \cos(\alpha) \cos(\beta) + \sin(\alpha) \sin(\beta)

 \rm 6.\: \tan(\alpha - \beta) = \dfrac{ \tan( \alpha) - \tan( \beta ) }{1 + \tan( \alpha ) \tan( \beta ) }

Answered by Anonymous
30

{ \large{ \underline{ \sf{Solution :}}}}

To Prove :

  • {\boxed{ \rm{2tan50° = tan70°-tan20°}}}

As We Know,

   \blue\star\boxed{ \displaystyle \rm{ \tan(A - B) = \frac{ \tan \: A  -  \tan  \: B  }{1 +  \tan \:A \:\tan\:  B }  }}

   \red\star\boxed{ \displaystyle \rm{ \tan(A+B) = \frac{ \tan \: A  -  \tan  \: B  }{1  -  \tan \:A \:\tan\:B }  }}

Now,

 \displaystyle \rm{ \implies \:  \tan(50^{0} )  =  \tan(70 ^{0}  - 20^{0}) }

  {\implies\displaystyle \rm{ =  \dfrac{ \tan \: 70 ^{0} -20 {}^{0}  }{1 +  \tan \: 70  ^{0} \tan \: 20 {}^{0} } }}

  {\implies\displaystyle \rm{ \tan \:( 50 {}^{0} ) =  \dfrac{ \tan \: 70 ^{0} -20 {}^{0}  }{1 +  \tan \: 70  ^{0} \tan \: 20 {}^{0} }...(1) }}

 \displaystyle \rm{ \implies \:  \tan(90 ^{0}) }

 \displaystyle \rm{ \implies \:  \tan(70 ^{0})  + (20^{0} )}

  {\implies\displaystyle \rm{=  \dfrac{ \tan \: 70 ^{0} -20 {}^{0}  }{1  -  \tan \: 70  ^{0} \tan \: 20 {}^{0} }}}

 \displaystyle \rm{ \implies \:  \tan(90 ^{0}) }

  {\implies\displaystyle \rm{=  \dfrac{ \tan \: 70 ^{0} -20 {}^{0}  }{1  -  \tan \: 70  ^{0} \tan \: 20 {}^{0} }}}

Thus,

{ \implies \displaystyle \rm{1 -  \tan \: 70 ^{0} \tan \:20 ^{0}   = 0 }}

{ \implies \displaystyle \rm{ \tan \: 70^{0}  \tan \: 20 ^{0}  = 1}}

Subsitute This Result in (1)

We Get,

  {\implies\displaystyle \rm{ \tan \:( 50 {}^{0} ) =  \dfrac{ \tan \: 70 ^{0} -20 {}^{0}  }{1 + 1 }}}

  {\implies\displaystyle \rm{ \tan \:( 50 {}^{0} ) =  \dfrac{ \tan \: 70 ^{0} -20 {}^{0}  }{2}}} \:

{\implies \displaystyle \rm{ \tan \: 70 {}^{0}  -  \:tan \: 20 {}^{0} = 2 \tan \: 50 {}^{0}  }}

Hence Proved.

____________________________

Additional Information :

\bigstar \: \underline{ \boxed{ \rm\dfrac{d}{dx}( {x}^{n} ) =n {x}^{n - 1} }}

\bigstar \:\underline{ \boxed{ \rm\dfrac{d}{dx}( C ) =0}}

\bigstar \: \underline{ \boxed{ \rm \dfrac{d}{dx}(C \times f) = C\dfrac{d}{dx}f}}

\bigstar \: \underline{ \boxed{ \rm \dfrac{d}{dx}(f \pm g) = \dfrac{d}{dx}f \pm \dfrac{d}{dx}g}}

 \bigstar \boxed{\displaystyle \rm  \int {x}^{n} \: dx = \dfrac{ {x}^{n + 1} }{n + 1} + C}

\bigstar \: \underline{ \boxed{ \rm \dfrac{d}{dx}(fg) =f \dfrac{d}{dx}g + g \dfrac{d}{dx}f }}

Similar questions