Math, asked by a9a4mudiraj, 1 year ago

8. Prove that sec?0 + cosec?0 = sec?0 .cosec?0.​

Answers

Answered by sonabrainly
2

Answer:

Step-by-step explanation:

Let us consume theta to be "p".

Now proceed.

Given, sin p - cos p = 0

=> (sin p - cos p)² = 0²

=> sin²p + cos²p = 2 sin p cos p

=> 1/2 = sin p cos p

Also, (sin p + cos p)²

= sin²p + cos²p + 2 sin p cos p

= 1 + 2 (1/2)

= 1 + 1

= 2

Therefore, (sin p + cos p) = √2

Now, sec p + cosec p = x

=> 1/cos p + 1/sin p = x

=> (sin p + cos p) / sin p cos p = x

=> 2√2 = x

Answered by IamIronMan0
14

Step-by-step explanation:

 \sec {}^{2} (x)  +  \csc {}^{2} (x)   \\ \\ =\frac{1}{   \cos {}^{2} (x)} +    \frac{1}{   \sin {}^{2} (x) }   \\ \\    =  \frac{{   \sin {}^{2} (x)} +{   \cos {}^{2} (x)}}{   \sin{}^{2} (x){   \cos {}^{2} (x)} } \\  \\   = \frac{1}{   \sin{}^{2} (x){   \cos {}^{2} (x)} }  \\  \\  \\  =  \sec {}^{2} (x)  \csc {}^{2} (x)

Similar questions