Math, asked by ishujain415, 1 day ago


8 question please explain

Attachments:

Answers

Answered by subham1955
0

Answer:

(b) (1 - k)/(1 + k)

(d) (k - 1)/(k + 1)

8. If tan theta_{1} = k * cot theta_{2} , then (cos(theta_{1} - theta_{2}))/(cos(theta_{1} + theta_{2})) =

(c) (k + 1)/(k - 1)

(a) (1 + k)/(1 - k)

Step-by-step explanation:

(b) (1 - k)/(1 + k)

(d) (k - 1)/(k + 1)

8. If tan theta_{1} = k * cot theta_{2} , then (cos(theta_{1} - theta_{2}))/(cos(theta_{1} + theta_{2})) =

(c) (k + 1)/(k - 1)

(a) (1 + k)/(1 - k)

(b) (1 - k)/(1 + k)

(d) (k - 1)/(k + 1)

8. If tan theta_{1} = k * cot theta_{2} , then (cos(theta_{1} - theta_{2}))/(cos(theta_{1} + theta_{2})) =

(c) (k + 1)/(k - 1)

(a) (1 + k)/(1 - k)

(b) (1 - k)/(1 + k)

(d) (k - 1)/(k + 1)

8. If tan theta_{1} = k * cot theta_{2} , then (cos(theta_{1} - theta_{2}))/(cos(theta_{1} + theta_{2})) =

(c) (k + 1)/(k - 1)

(a) (1 + k)/(1 - k)

Similar questions