Math, asked by maheshmopz, 1 year ago

8 + root 5 by 8 minus root 5 + 8 minus root 5 by 8 + root 5 is equal to a + 8 root 5 b​

Answers

Answered by hannahliprens
13

Answer: a= 138/59, b=0

Step-by-step explanation:

Here is your answer .....hope it helps

Attachments:
Answered by payalchatterje
1

Complete question is 8 + root 5 by 8 minus root 5 + 8 minus root 5 by 8 + root 5 is equal to a + 8 root 5 b then find the value of a and b.

Answer:

Required value of a is (138/59) and value of b is 0.

Step-by-step explanation:

Given,

 \frac{8 +  \sqrt{5} }{8 -  \sqrt{5} }  +  \frac{8 -  \sqrt{5} }{8 +  \sqrt{5} }  = a + b \times 8 \sqrt{5} .......(1)

First we take,

 \frac{8 +  \sqrt{5} }{8 -  \sqrt{5} }

Multiplying denominator and nemerator by

(8  +   \sqrt{5} ) and get,

 \frac{(8 +  \sqrt{5} )(8  +   \sqrt{5}) }{(8 -  \sqrt{5} )(8 +  \sqrt{5}) }  =  \frac{ {(8  + \sqrt{5} )}^{2} }{ {8}^{2}  -  { \sqrt{5} }^{2} }  =  \frac{64  +  16 \sqrt{5  } + 5 }{64 - 5}  =  \frac{69  +  16 \sqrt{5} }{59}

Second we take,

 \frac{8   -    \sqrt{5} }{8  +  \sqrt{5} }

Multiplying denominator and nemerator by

8 -  \sqrt{5} and get,

 \frac{(8 -  \sqrt{5})(8  -  \sqrt{5})  }{(8 +  \sqrt{5} )(8 -  \sqrt{5} )}  =   \frac{ {(8 -  \sqrt{5}) }^{2} }{ {8}^{2}  -  { \sqrt{5} }^{2} }  =  \frac{64 - 16 \sqrt{5}   + 5}{64 - 5}  =  \frac{69 - 16 \sqrt{5} }{59}

From equation (1),

 \frac{69 + 16 \sqrt{5} }{59}  +  \frac{69 - 16 \sqrt{5} }{59}  = a + 8 \sqrt{5} b

 \frac{69 - 16 \sqrt{5}  + 69 + 16 \sqrt{5} }{59}  = a + 8 \sqrt{5} b

 \frac{138}{59}  = a + 8 \sqrt{5} b

Comparing both side and get,

a =  \frac{138}{59}

and b=0

Here applied formulas are

 {(x + y)}^{2}  =  {x}^{2}  + 2xy +  {y}^{2}

 {(x - y)}^{2}  =  {x}^{2}  - 2xy +  {y}^{2}

 {x}^{2}  -  {y}^{2}  = (x + y)(x - y)

Similar questions