8.
seg
In figure 3.63, seg AD I
BC.
seg AE is the bisector of ZCAB and
E
Pe
C-E-D.
Prove that
ZDAE
1
2
- (ZC- ZB)
B
A
Fig. 3.63
Answers
Answer:
Given.
AE is bisector of angle BAC, hence
angle BAE = angle EAC = X LET.........(A)
Now, AD is perpendicular to BC
hence angle ADC = angle ADB = 90°
now in ∆ ADC
(I am not using the word angle now)
DAC + DCA + ADC = 180°
DAC + DCA = 180 - ADC = 189-90 = 90°
DAC + DCA = 90°...................(1)
similarly from ∆ ADB
ABD + BAD = 90°...................(2)
(1) - (2)
DAC + DCA - ABD - BAD = 0
DCA - ABD = BAD - DAC
or
BAD - DAC = C - B. (DCA = C, ABD = B)
BAE + EAD - (EAC - EAD) = C - B
X + EAD - X + EAD = C - B. (from A)
2*EAD = C - B
EAD = (1/2)*(C - B)
Answer:
Step-by-step explanation:
Given.
AE is bisector of angle BAC, hence
angle BAE = angle EAC = X LET.........(A)
Now, AD is perpendicular to BC
hence angle ADC = angle ADB = 90°
now in ∆ ADC
(I am not using the word angle now)
DAC + DCA + ADC = 180°
DAC + DCA = 180 - ADC = 189-90 = 90°
DAC + DCA = 90°...................(1)
similarly from ∆ ADB
ABD + BAD = 90°...................(2)
(1) - (2)
DAC + DCA - ABD - BAD = 0
DCA - ABD = BAD - DAC
or
BAD - DAC = C - B. (DCA = C, ABD = B)
BAE + EAD - (EAC - EAD) = C - B
X + EAD - X + EAD = C - B. (from A)
2*EAD = C - B
EAD = (1/2)*(C - B)