Math, asked by prasudhana2005, 7 months ago

8. sin=1/2 then find the value of tana​

Answers

Answered by Anonymous
7

Correct Question:-

• Sin \dfrac{1}{2} then find the value of tan .?

Given:-

\implies \sf sin = \dfrac{1}{2}

To find:-

\dashrightarrow The value of tan.

How to find?

  • We have given the value of sin so sin = p/H so here base is not given .
  • Now by using Pythagoras theroam firstly we will find base and then we will be with the answer.
  • So Lets start

Solution:-

\implies \sf sin = \dfrac{1}{2} = \dfrac{p}{h}

So, here.

\implies \sf Perpendicular = 1 \\ \implies \sf Hypotenuse = 2 \\ \implies \sf Base(?)

Now,

According to Pythagoras formula.

\large {\boxed {\boxed {\sf {\red { (H)^{2} = (P)^{2} + (B)^{2} }}}}}

We will find the base,.

\implies \sf (H)^{2} = (P)^{2} + (B)^{2} \\ \\ \implies \sf (2)^{2} = (1)^{2} + (B)^{2} \\ \\ \implies \sf 4 = 1 + (B)^{2} \\ \\ \implies \sf 4 - 1 = (B)^{2} \\ \\ \implies \sf 3 = (B)^{2} \\ \\ \implies \sf \sqrt{3} = B

So by above solving we get the value of base .

\hookrightarrowWe know that

\sf tan =  \dfrac{perpendicular}{Base}

So now

\implies \sf perpendicular= 1 \\ \\ \implies \sf Hypotenuse = 2 \\ \\ \implies \sf Base = \sqrt{3}

Hence, \hookrightarrow \sf tan = \dfrac{1}{\sqrt{3}}

Answer:-

\large {\boxed {\boxed {\sf {\red {Answer = \dfrac{1}{\sqrt{3}} }}}}}

More to know:-

\implies \sf sin = \dfrac{Opposite \: side }{Hypotenuse} = \dfrac{P}{H} \\ \\ \implies \sf cos = \dfrac{Adjacent\: side }{Hypotenuse} = \dfrac{B}{H} \\ \\ \implies \sf tan = \dfrac{Opposite\: side }{Adjacent\:side} = \dfrac{P}{B} \\ \\ \implies \sf cosec= \dfrac{Hypotenuse}{Opposite \:Side} = \dfrac{H}{P} \\ \\ \implies \sf Sec = \dfrac{Hypotenuse}{Adjacent \:Side} = \dfrac{H}{B} \\ \\ \implies \sf Cot = \dfrac{Adjacent\: side}{Opposite\: side} = \dfrac{B}{P}

Similar questions