(8) sin (45° + 0) - cos (45° - 0) =
A. 2 cos 0 B. O C. 2 sin 0 D. 1
Answers
Answered by
0
Answer:
B . 0
Step-by-step explanation:
sin 45°=1/√2
cos 45°=1/√2
(1/√2) - (1/√2-0)
(1//√2) - ( 1/√2)
0
Answered by
1
Step-by-step explanation:
USING FORMUALES ::--
SIN(A+B)= SINA COS B + COS A SIN B
COS(A-B) = COSA COS B - SINA SINB
SIN 0° =0 ,,,, SIN 45° = 1/√2
COS 0° =1 ,,,,,, COS 45° = 1/√2.
NOW , WE HAVE
SIN(45+0) - COS(45-0)
[ SIN 45° COS0° + COS45° SIN0°] — [COS45° COS0° – SIN45° SIN0°]
= [ 1/√2*1 + 1/√2*0 ] — [ 1/√2*1 – 1/√2 * 0]
= 1/√2 — 1/√2 =0
I HOPE IT HELPS U
Similar questions