8. The adjacent angles of a parallelogram are (x + 25) and (2x + 35)". Find the
measure of all angles of parallelogram.
Answers
I hope this may help you
May God bless you
Step-by-step explanation:
Given :-
The adjacent angles of a parallelogram are
(x + 25)° and (2x + 35)°.
To find :-
Find the measure of all angles of parallelogram?
Solution :-
Given that :
The adjacent angles of a parallelogram are
(x + 25)° and (2x + 35)°.
We know that
The adjacent angles in a Parallelogram are Supplementary.
=> (x + 25)° + (2x + 35)° = 180°
=> (x+2x) +(25°+35°) = 180°
=> 3x + 60° = 180°
=> 3x = 180°-60°
=> 3x = 120°
=> x = 120°/3
=>x = 40°
Now,
If x = 40° then (x+25)°
= 40°+25°
= 65°
If x = 40° then (2x+35)°
= 2×40°+35°
= 80°+35°
= 115°
The adjacent angles are 65° and 115°
We know that
In a Parallelogram opposite angles are equal.
So ,
Opposite angle of 65° = 115°
Opposite angle of 115° = 65°
The angles are 65° ,115°, 65° and 115°
Answer:-
The measures of all angles in the given Parallelogram are 65° ,115°, 65° and 115°
Used formulae:-
- The adjacent angles in a Parallelogram are Supplementary.
- In a Parallelogram opposite angles are equal.