Math, asked by pattnaikranjita674, 1 month ago

8. The area of trapezium is 640 cm². If its parallel sides are in the ratio 2 : 3 and the perpendicular distance between the two is 16 cm, find length of each parallel side.​

Answers

Answered by ShírIey
86

\frak{Given}\begin{cases}\sf{\quad Area  \: of  \: trapezium = \bf{640\;cm^2}}\\\sf{\quad Side_{ \: 1} : Side_{ \: 2} = \bf{2:3}} \\\sf{\quad Distance \:  b/w \:  them = \bf{16 \;cm}}\end{cases}\\

\frak{To\;find:} Length of each // side?

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━━⠀

Let's say, that the // side of the given trapezium be 2x and 3x respectively.

⠀⠀⠀

\underline{\bf{\dag} \:\mathfrak{As\;we\;know\: that\: :}}\\⠀⠀⠀⠀

\qquad\:\star\;\underline{\boxed{\pmb{\frak{Area_{\;(trapezium)} = \dfrac{1}{2}\bigg \lgroup x + y\bigg\rgroup h}}}}

where:

  • x and y are the // sides of trapezium.
  • h is the distance b/w the // sides.
  • Given area is 640 cm².

⠀⠀

⠀⠀\underline{\bf{\dag} \:\mathfrak{Substituting\;values\;in\; formula\: :}}\\\\

:\implies\sf 640 = \dfrac{1}{2}\bigg\lgroup 3x + 2x \bigg\rgroup 16 \\\\\\:\implies\sf 640 = \dfrac{ \: 1}{\cancel{\;2}} \times 5x \times  \: \cancel{16}\\\\\\:\implies\sf 640 = 5x \times 8\\\\\\:\implies\sf 640 = 40x\\\\\\:\implies\sf  x = \cancel\dfrac{640}{40}\\\\\\:\implies\underline{\boxed{\pmb{\frak{\red{x = 16}}}}}\;\bigstar\\

⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━⠀

Therefore,

  • Length of // Side₁ = 2x = 2(16) = 32 cm
  • Length of // Side₂ = 3x = 3(16) = 48 cm

⠀⠀

\therefore{\underline{\textsf{Hence, the length of the parallel sides are \textbf{32 cm, 48 cm} respectively.}}}

Attachments:
Answered by Anonymous
120

Answer:

Given :-

  • The area of trapezium is 640 cm².
  • The parallel sides are in the ratio of 2 : 3 and the perpendicular distance between the two sides is 16 cm.

To Find :-

  • What are the length of each parallel sides.

Formula Used :-

\clubsuit Area Of Trapezium Formula :

\footnotesize\mapsto \sf\boxed{\bold{\pink{Area_{(Trapezium)} =\: \dfrac{1}{2} \times Sum\: of\: parallel\: sides \times Height}}}\\

Solution :-

Let,

\leadsto \bf{Length\: of\: first\: side_{(Trapezium)} =\: 2y\: cm}

\leadsto \bf{Length\: of\: second\: side_{(Trapezium)} =\: 3y\: cm}

According to the question by using the formula we get,

\implies \sf \dfrac{1}{2} \times \bigg(2y + 3y\bigg) \times 16 =\: 640

\implies \sf \dfrac{1}{2} \times 5y \times 16 =\: 640

\implies \sf 5y \times 16 =\: 640 \times 2

\implies \sf 5y \times 16 =\: 1280

\implies \sf 5y =\: \dfrac{\cancel{1280}}{\cancel{16}}

\implies \sf 5y =\: 80

\implies \sf y =\: \dfrac{\cancel{80}}{\cancel{5}}

\implies \sf \bold{\purple{y =\: 16\: cm}}

Hence, the required length of parallel sides are :

Length of first side of trapezium :

\longrightarrow \sf Length\: of\: first\: side_{(Trapezium)} =\: 2y\: cm

\longrightarrow \sf Length\: of\: first\: side_{(Trapezium)} =\: 2 \times 16\: cm

\longrightarrow \sf\bold{\red{Length\: of\: first\: side_{(Trapezium)} =\: 32\: cm}}

Length of second side of trapezium :

\longrightarrow \sf Length\: of\: second\: side_{(Trapezium)} =\: 3y\: cm

\longrightarrow \sf Length\: of\: second\: side_{(Trapezium)} =\: 3 \times 16\: cm

\longrightarrow \sf\bold{\red{Length\: of\: second\: side_{(Trapezium)} =\: 48\: cm}}

{\small{\bold{\underline{\therefore\: The\: length\: of\: each\: parallel\: sides\: are\: 32\: cm\: and\: 48\: cm\: respectively\: .}}}}

Similar questions