Math, asked by adnanayub138, 9 months ago

8.
The figure shows a rhombus ABCD. The diagonal
DB is produced to E such that BC = BE and
CDE = 46.
Find
(1) BAD,
(ii) BĈE.

9.
The figure shows a rhombus ABCD where
the diagonals AC and BD intersect at E. Find the
value of x.​

Attachments:

Answers

Answered by Anonymous
6

Given :-

  • <CDE = 46°=(3x + 7)°
  • BC = BE
  • <ABE = (2x + 53)°

To find :-

  • The value of x = ?

Solution :-

 \tt\: as \: we \: know \: (3x + 7){ \degree} = 46{ \degree} \\  \tt:  \green{ \underline{ \bold{according \: to \: the \: question}}} \\  \tt: (3x + 7){ \degree} = 46{ \:degree} \\  \tt: 3x =( 46 - 7)   \\  \tt: 3x \:  = 39 \:  \:  \:  \: (dividing \: both \: side \: by \: 3) \\  \tt:  \orange { \underline{  \bold x \:  =  13{ \degree}}}

Attachments:
Answered by ranchiranjeet
4

Answer:

mark me brianlist

Step-by-step explanation:

<CDE = 46°=(3x + 7)°

BC = BE

<ABE = (2x + 53)°

✧To find :-

The value of x = ?

✧ Solution :-

\begin{gathered}\tt\: as \: we \: know \: (3x + 7){ \degree} = 46{ \degree} \\ \tt: \green{ \underline{ \bold{according \: to \: the \: question}}} \\ \tt: (3x + 7){ \degree} = 46{ \:degree} \\ \tt: 3x =( 46 - 7) \\ \tt: 3x \: = 39 \: \: \: \: (dividing \: both \: side \: by \: 3) \\ \tt: \orange { \underline{ \bold x \: = 13{ \degree}}}\end{gathered}

asweknow(3x+7)°=46°

:

accordingtothequestion

:(3x+7)°=46degree

:3x=(46−7)

:3x=39(dividingbothsideby3)

:

x=13°

Similar questions