Math, asked by chhayasinha, 11 months ago

8.The following table gives weights of the students of two classes. Calculate the coefficient of variation of the two distributions. Which series is more variable?
Weight (in kg) ClassA ClassB
30-40 8. 9.
40-50. 16. 12
50-60. 12. 18​

Answers

Answered by Alcaa
12

Answer:

CV of Class A = 33.33%

CV of Class B = 35.23%

Step-by-step explanation:

We are given the following table of weights of  the students of two classes ;

         Weight (in kg)        Class A          Class B

              30 - 40                   8                     9

              40 - 50                  16                    12

              50 - 60                  12                     18

Coefficient of variation formula = \frac{Standard deviation}{Mean} * 100

  • Coefficient of Variation of class A ;

         Mean = \frac{8+16+12}{3}  = 12

         Standard deviation = \sqrt{\frac{(8-12)^{2} +(16-12)^{2} + (12-12)^{2} }{3-1} } = 4

         C.V. =  \frac{Standard deviation}{Mean} * 100  = \frac{4}{12} *100 = 33.33%

  • Coefficient of Variation of class B ;

          Mean = \frac{9+12+18}{3} = 13

          Standard deviation = \sqrt{\frac{(9-13)^{2} +(12-13)^{2} + (18-13)^{2} }{3-1} } = 4.58

          C.V. =  \frac{Standard deviation}{Mean} * 100  = \frac{4.58}{13} *100 = 35.23%

Therefore, students of Class B has more variation in weights.

Answered by madhupawar2006
0

MARK ME AS BRAINLIEST

SEE Q no 5

Attachments:
Similar questions