Math, asked by ChandruB, 4 months ago

8. The mass of a spherical ball of radius 2 cm is
8 kg. Find the mass of a spherical shell of the same
material whose inner and outer radii are 4 cm and
5 cm respectively.​

Answers

Answered by TheMoonlìghtPhoenix
71

Answer:

Step-by-step explanation:

ANSWER:-

Given that:-

  • Mass of a spherical ball 8 kg
  • Radius of the ball 2 cm

Second Shell:-

  • Re- made spherical shell outer Radii 5 cm
  • Inner radii 4 cm

Concept:-

Physics and Maths assemble in this question!

\sf{Density = \dfrac{Mass}{Volume}}

Let's Do!

The only catch in this question - Density of both the balls are same, because the material used is same in both ball as well as shell.

Ball Volume (O)

\sf{Volume \ of \ Ball = \dfrac{4}{3} \pi \times r^3}

\sf{Volume \ of \ Ball = \dfrac{4}{3} \times \dfrac{22}{7} \times (2)^3}

\sf{Volume \ of \ Ball = 33.52 \ cm^3}

Density of Ball:-

\sf{Density = \dfrac{Mass}{Volume}}

\sf{Density = \dfrac{8}{33.52}} kg/cm^3

Now, volume of shell

= Volume of bigger shell - Volume of smaller shell.

\sf{Volume \ of \ Shell = \dfrac{4}{3} \pi \times r^3}

\sf{Volume \ of \ Shell = \dfrac{4}{3} \times \dfrac{22}{7} \times (5-4)^3}

\sf{Volume \ of \ Shell = \dfrac{4}{3} \times \dfrac{22}{7} }

\sf{Volume \ of \ Shell = 4.19 \ cm^3}

Again, we will use:-

\sf{Density = \dfrac{Mass}{Volume}}

\sf{ Mass=Density \times Volume}

\sf{Mass = \dfrac{8}{33.52} \times 4.19}

\sf{Mass = \dfrac{33.52}{33.52}}

\boxed{\sf{Mass = 1 \ kg}} is the required answer.

Answered by Anonymous
72

 \star\underline{\mathtt\orange{❥Q} \mathfrak\blue{u }\mathfrak\blue{E} \mathbb\purple{ s}\mathtt\orange{T} \mathbb\pink{iOn}}\star\:

8. The mass of a spherical ball of radius 2 cm is

8 kg. Find the mass of a spherical shell of the same material whose inner and outer radii are 4 cm and 5 cm respectively.

\star\underbrace{\mathtt\red{❥ᴀ} \mathtt\green{n }\mathtt\blue{S} \mathtt\purple{W}\mathtt\orange{e} \mathtt\pink{R}}\star\:

 { { \underbrace{ \mathbb{ \red{GiVeN\ }}}}}

 Radius\: of \:the \: spherical \:ball\: is=2cm

 Mass\:of \:the \:spherical \:ball\:is=8kg

 { { \underbrace{ \mathbb{ \red{To\:PrOvE\ }}}}}

 Mass \:of\: the\: spherical \:shell of\\ same\: material

 Inner\: radii \:is \:4cm

 Outer\: radii\: is \:5cm

 { \color{aqua}{ \underbrace{ \underline{ \color{lime}{ \mathbb{\star SoLuTiOn\star }}}}}}

 \huge \bold{Volume\:of\:ball}

 {\boxed  {\frac{4}{3} \pi \times  {r}^{3}}}

 Substitute\: the \:values

 =  \frac{4}{3}  \times  \frac{22}{7}\times {2}^{3}

 =33.52 {cm}^{3}

 \therefore Volume \:of\: the\: ball {\boxed {\boxed {= 33.52{cm}^{3}}}}

 \huge \bold{Density\: of \:the \:ball}

 {\boxed {Density= \frac{Mass}{Volume}}}

Substitute\: the \:values

 {\boxed {\boxed {Density =\frac{8}{33.52} kg/{cm}^{3}}}}

 \huge\bold{Volume}

 Volume=Volume \:of\: outer\: shell - volume\\ of\: inner \:shell

 {\boxed  {\frac{4}{3} \pi \times  {r}^{3}}}

 Substitute\: the \:values

 =  \frac{4}{3}  \times  \frac{22}{7}\times {(5-4)}^{3}

 =  \frac{4}{3}  \times  \frac{22}{7}\times {(1)}^{3}

 {\boxed {\boxed {=4.19{cm}^{3}}}}

 \therefore Volume \:of \:the \:shell\: is{\boxed {\boxed {=4.19{cm}^{3}}}}

 {\boxed {Density = \frac {Mass}{Volume}}}

 Mass= Density \times Volume

 Mass= \frac{8}{33.52} \times 4.19

 Mass= \cancel \frac{33.52}{33.52}

 {\boxed {\boxed {Mass=1kg}}}

 \therefore Mass\:of\: the\: spherical \:shell\: is\:{\boxed {\boxed {1kg}}}

 \blue{\boxed{\blue{ \bold{\fcolorbox{red}{black}{\green{Hope\:It\:Helps}}}}}}

 {\mathbb{\colorbox {orange} {\boxed{\boxed{\boxed{\boxed{\boxed{\colorbox {lime} {\boxed{\boxed{\boxed{\boxed{\boxed{\colorbox {aqua} {@suraj5069}}}}}}}}}}}}}}}

Similar questions