Math, asked by akhlaqarwash, 3 months ago

8. The numerator of a fraction is 1 less than denominator. If the denominator is added to the
numerator and the mumerater is subtracted from the denominator, we get 11. Find the fraction​

Answers

Answered by Anonymous
51

Given :-  

  • The numerator of a fraction is 1 less than denominator.  

Condition :-  

  • If the denominator is added to the numerator and the numerator is subtracted from the denominator, we get 11.  

To Find :-  

  • Find the fraction

Solution :-  

~Let the denominator of the fraction be ‘ x ’ then the numerator of the fraction will be ‘ x - 1 ’

\sf \bullet \;\; \dfrac{x-1}{x}  

ATQ ::  

\sf \implies \dfrac{ x -1 + ( x ) }{ x - ( x - 1 ) } = 11

\sf \implies \dfrac{ x + x -1 }{ x - x + 1 } = 11

\sf \implies \dfrac{ 2x -1 }{1} = 11

\sf \implies 2x - 1 = 11 \times 1

\sf \implies 2x -1 = 11

\sf \implies 2x = 11 + 1

\sf \implies 2x = 12

 

\sf \implies x = \dfrac{12}{2}

\sf \implies x = 6

_____________

Therefore ,

the fraction will be  :

\sf \bullet \;\; \dfrac{5}{6}

_____________

Verification :-  

~Let’s put the value of x in the given equation to check the answer.  

\sf \implies \dfrac{ 6 - 1 + ( 6 ) }{ 6 - ( 6 -1 )} = 11

 

\sf \implies \dfrac{ 12 -1 }{ 6 - 6 + 1 } = 11

\sf \implies \dfrac{11}{1} = 11

 

\sf \implies 11 = 11 \times 1

\sf \implies 11 = 11

LHS = RHS  

Hence, the answer is correct

═════════════════════════

Answered by BrainlyRish
28

Given: The numerator of a fraction is 1 less than denominator. If the denominator is added to the

numerator and the numerator is subtracted from the denominator, we get 11.

Need To Find: The fraction .

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

❍ Let's consider the denominator be x

Given that,

⠀⠀⠀⠀⠀The numerator of a fraction is 1 less than denominator.

Then ,

\therefore The Numerator is x - 1 .

Then ,

\qquad \quad\implies \sf{\bf{Original \:Fraction \::  \dfrac{x-1}{x} }}\\

Given that ,

⠀⠀⠀⠀⠀If the denominator is added to the numerator and the numerator is subtracted from the denominator, we get 11.

⠀⠀⠀⠀⠀⠀\underline {\sf{\bf{\star\:According \: To\: The \: Question \:  \::}}}\\

\qquad \quad:\implies \sf{\bf{\Bigg( \dfrac{x-1+(x)}{x -(x+1)} =11\Bigg) \qquad\quad\qquad ..Eq.\:1}}\\

⠀⠀⠀⠀⠀\qquad \quad:\implies \sf{ \dfrac{x-1+(x)}{x+(x-1)} =11}\\

⠀⠀⠀⠀⠀⠀⠀\qquad \quad:\implies \sf{ \dfrac{x-1+x}{x+x-1} =11}\\

⠀⠀⠀⠀⠀⠀⠀⠀⠀\qquad \quad:\implies \sf{\dfrac{x+x-1}{1}=11}\\

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀\qquad \quad:\implies \sf{ \dfrac{2x-1}{1}=11}\\

By Cross- Multiplication :

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀\qquad \quad:\implies \sf{ 2x - 1=11}\\

⠀⠀⠀⠀⠀⠀⠀⠀⠀\qquad \quad:\implies \sf{ 2x =11+1}\\

⠀⠀⠀⠀⠀⠀⠀\qquad \quad:\implies \sf{ 2x =12}\\

⠀⠀⠀⠀⠀\qquad \quad:\implies \sf{ x =\dfrac{\cancel{12}}{\cancel{2}}}\\

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀\underline {\boxed{\pink{ \mathrm {  x = 6 \: }}}}\\

Therefore,

  • The Numerator of the Fraction is (x - 1 ) = 6 - 1 = 5

  • The Denominator of the Fraction is x = 6

Therefore,

⠀⠀⠀⠀⠀\underline {\therefore\:{\pink{ \mathrm {  The\:Fraction\:is\:\dfrac{5}{6}}}}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

\qquad\quad\boxed{\bf{\mid{\overline{\underline{\blue{\bigstar\: Verification \: :}}}}}\mid}\\\\\\

⠀⠀⠀⠀⠀⠀\underline {\sf{\bf{\star\:Now \: By \: Substituting \: the \: Found \: Values \:in\:Eq.\:1:}}}\\

\qquad \quad:\implies \sf{\bf{\Bigg( \dfrac{x -1+(x)}{x+(x-1)}=11\Bigg) \qquad\quad\qquad ..Eq.\:1}}\\

⠀⠀⠀⠀⠀⠀\qquad \quad:\implies \sf{ x =6\:\quad \longrightarrow Putting \:in\:Eq.\:1}\\

⠀⠀⠀⠀⠀⠀⠀⠀⠀\qquad \quad:\implies \sf{\dfrac{6-1+(6)}{6 - (6+1)}=11}\\

⠀⠀⠀⠀⠀⠀⠀\qquad \quad:\implies \sf{\dfrac{12 -1}{6-6+1}=11}\\

⠀⠀⠀⠀\qquad \quad:\implies \sf{\dfrac{11}{1}=11}\\

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀\underline {\boxed{\pink{ \mathrm {  11 = 11 \: }}}}\\

⠀⠀⠀⠀⠀ \therefore \sf{\bf{ Hence \;Verified \;}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Similar questions