Math, asked by ashmita2003sharma, 9 months ago

8. The perimeter of equilateral triangle is 60 cm. The area is
103 root cm2
100root3 cm2
20root3 cm2
30 root3 cm2​

Answers

Answered by Anonymous
29

Given :

perimeter of equilateral triangle is 60 cm

To find :

it's area

Solution :

perimeter of an equilateral triangle = 60

3a = 60

a = 60/3

a = 20 cm

area of an equilateral triangle = √3/4 a² sq. units

= √3/4 x 20 x 20

= √3/4 x 400

= 100√3 cm²

=> it's area is 100√3 cm²

then the option 2 is correct

Answered by Anonymous
14

Answer:

Option (b) 100√3 cm² is right answer.

Step-by-step explanation:

We have given that,

  • Perimeter = 60 cm

  • So, Semi Perimeter = \dfrac{60}{2} = 30 cm

Hence,the Length of each side will be :]

 \\ \sf a + a + a = 60  \\  \\

\\ \sf 3 a = 60  \\  \\

\\ \sf a  =  \dfrac{60}{3}  \\  \\

\purple{\sf a = 20 \: cm} \\

  • Now, we will find the area of equilateral triangle by given below formula :]

\bigstar\:\:\boxed{\underline{\underline  {\sf  Area = \sqrt{s(s - a)(s - b)(s - c)}}}} \:  \: \bigstar \\

Now, putting the given values in above formula we get :

: \implies\sf  Area = \sqrt{30(30 - 20)(30 - 20)(30- 20)} \\  \\

: \implies\sf  Area = \sqrt{30 \times 10 \times 10 \times 10} \\  \\

: \implies\sf  Area = \sqrt{3 \times 10 \times 10 \times 10 \times 10} \\  \\

: \implies\sf  Area = 10 \times 10 \sqrt{3}\\  \\

: \implies \underline{  \boxed{\sf  Area = 100 \sqrt{3} \: cm^{2} }} \\  \\

Similar questions