Math, asked by ssaraswathi475, 8 months ago

8. The points A (-4,-2), B (4, 6),
C (-4,6) and D (4,-2) are the
vertices of a​

Answers

Answered by Ataraxia
9

SOLUTION :-

Given that,

  • A = ( -4 , -2 )
  • B = ( 4 , 6 )
  • C = ( -4 , 6 )
  • D = ( 4 , -2 )

\boxed{\bf Distance \ formula = \sqrt{(x_{2}-x_{1})^2+(y_{2}-y_{1})^2}  }

\bullet \sf \ AB = \sqrt{(4-(-4))^2+(6-(-2))^{2}}

        = \sf \sqrt{(4+4)^2+(6+2)^2} \\\\= \sqrt{8^{2}+8^{2}} \\\\= \sqrt{64+64} \\\\= \sqrt{128} \\\\= 8\sqrt{2}  \ units

\bullet\sf \ BC = \sqrt{(-4-4)^{2}-(6-6)^{2}}

       = \sf \sqrt{8^2+0} \\\\= \sqrt{64} \\\\= 8 \ units

\bullet\sf \ CD = \sqrt{(4-(-4))^{2}+(6-(-2))^2}

       = \sf \sqrt{(4+4)^{2}+(6+2)^{2} }\\\\= \sqrt{8^{2}+8^{2}} \\\\= \sqrt{64+64} \\\\=\sqrt{128} \\\\= 8 \sqrt{2}  \ units

\bullet \sf \ AD = \sqrt{(4-(-4))^{2}+(-2-(-2))^{2}}

       = \sf \sqrt{(4+4)^{2}(-2+2)^{2}} \\\\= \sqrt{8^{2}+0} \\\\= \sqrt{64} \\\\= 8 \ units

The points A, B, C and D are the points of a rectangle.

Since AB = CD and BC = AD .

Similar questions