Math, asked by tctanu2020, 10 months ago

8. The roots of the quadratic equation x +x/1= 3, x not = 0 are​

Answers

Answered by amitkumar44481
3

Correct QuestioN :

The roots of the quadratic equation x + 1/x = 3, x ≠ 0.

To FinD :

The roots of given Equation.

SolutioN :

 \tt  : \implies x +  \dfrac{1}{x}  = 3.

 \tt :  \implies \dfrac{ {x}^{2}  + 1}{x}  = 3.

 \tt :  \implies {x}^{2}   + 1= 3x.

 \tt :  \implies {x}^{2}   - 3x + 1= 0.

☛ Compare With General Equation.

 \tt \dagger \:  \:  \:  \:  \:  a{x}^{2}   + bx + c= 0.

Where as,

  • a = 1.
  • b = - 3.
  • c = 1.

☞ Let Find the value of x by Quadratic Formula.

 \tt   \dagger \:  \:  \:  \:  \: x =  \dfrac{ - b \pm \sqrt{ {b}^{2}  - 4ac} }{2 a}

 \tt :  \implies x =  \dfrac{ 3\pm \sqrt{ {( - 3)}^{2}  - 4 \times 1 \times 1} }{2}

 \tt :  \implies x =  \dfrac{ 3\pm \sqrt{ 9 - 4 } }{2}

 \tt :  \implies x =  \dfrac{ 3\pm \sqrt{ 5} }{2}

\rule{90}3

Either,

 \tt :  \implies x =  \dfrac{ 3+ \sqrt{ 5} }{2}

Or,

 \tt :  \implies x =  \dfrac{ 3\pm -{ 5} }{2}

Therefore, the roots of given Equation is 3 ± √5 /2.

Answered by TheMoonlìghtPhoenix
3

Answer:

Step-by-step explanation:

ANSWER:

First we will solve the equation and make it into Quadratic Equation.

x+\frac{1}{x}=3\\\frac{x^2+1}{x}=3\\

x^2+1=3x\\x^2-3x+1=0

Now we know the Quadratic Formula as:

x = \frac{-b\pm\sqrt{D}}{2a}

Where D is

D = b^2-4ac

Calculating D first,

a = 1, b = -3 , c = 1

D = (-3)^2-4(1)(1)

D = 9 - 4

D = 5

Placing D in Quadratic Formula,

\implies\frac{-(-3)\pm\sqrt{5}}{2(1)}

\frac{3+\sqrt{5}}{2} and \frac{3-\sqrt{5}}{2} are the zeroes of polynomial.

Things to Remember:-

x = \frac{-b\pm\sqrt{D}}{2a} is the Quadratic Formula used.

D = b^2-4ac is used to find the Discriminant.

Similar questions