8. The sum of the radii of two circles is 140 cm and the difference of their
circumferences is 88 cm. Find the diameters of the circles
Answers
GIVEN :
Sum of radii of two circles = 140cm
Let the two radii be = R and r
R + r = 140 -----(1)
Difference between circumferences = 88
We know that,
Circumference = 2πr
2πR - 2πr = 88
2π(R - r) = 88
R - r = 88 ÷ 44/7
R - r = 88 × 7/44
R - r = 2 × 7
R - r = 14 -----(2)
Now solve the eq - (1) & 2
R + R + r - r = 140 + 14
2R = 154
R = 154/2
R = 77
Substitute R in eq - (1)
R + r = 140
77 + r = 140
r = 140 - 77
R = 63
The radii of two circles = 77cm and 63cm
Then,
Diameter = ?
We know that,
Diameter = 2 × radius
= 2 × 77
= 154cm
= 2 × 63
= 126cm
Therefore, the diameters of two circles are 154cm and 126cm.
Answer:
Diameter of circle (i)=2r1= 2 x 77 = 154cm
Diameter of circle (i)=2r2= 2 x 63 = 126cm
Step-by-step explanation:
Given problem:
The sum of the radii of two circles is 140 cm and the difference of their circumferences is 88 cm. Find the diameters of the circles.
Solution:
To Find:
Let radius of circles be r1 and r2
Given that,
Sum of the radius = 140cm.
It means,
We have,
r1+r2=140 .......Equation(i)
Now,
Difference in circumferences= 88
2πr1-2πr2= 88
We know that,
Circumference = 2πr
We know that,
Diameter = 2 × radius.
So,
Diameter of circle (i) = 2r1 = 2 x 77 = 154cm.
Diameter of circle (ii)= 2r2= 2 x 63 = 126cm.
Therefore,
The diameters of two circles are 154cm and 126cm.