Physics, asked by soniajaygupta1980, 11 months ago

8. Two bodies which are equalin mass, move with uniform velocities of 6 ms and 18 ms, respectively.
Find the ratio of their kinetic energies.​

Answers

Answered by Anonymous
63

\Huge{\underline{\underline{\mathfrak{Answer \colon}}}}

From the Question,

  • Mass of both the bodies is equal

Let "u" and "v" be the velocities of both the bodies

  • u = 6 m/s

  • v = 18 m/s

Kinetic Energy of an object is given by:

\huge{\boxed{\boxed{\sf{K = \frac{1}{2}m{v}^{2}}}}}

Let k and K be the kinetic energies of the objects

Now,

 \sf{\frac{k}{K} = \frac{m{u}^{2}}{2}}{\frac{m{v}^{2}}{2}} \\  \sf{\because, the \ masses \ are \ equal}\\  \righttarrow \ \sf{\frac{k}{K} = \frac{{6}^{2}}{{18}^{2}}} \\ \\ \rightarrow \ \sf{\frac{k}{K} = \frac{36}{324}} \\

 \huge{\rightarrow \ \mathtt{k : K = 1 : 9}}

Thus,the ratio of their kinetic energies is 1 : 9

Answered by Anonymous
202

AnswEr :

⋆ Constant Mass of Both Body be x Kg.

\bold{First \: Body} \begin{cases} \sf{Mass=x \: kg} \\ \sf{Velocity(v_1) =6m/s} \end{cases}

\bold{Second \: Body} \begin{cases} \sf{Mass=x \: kg} \\ \sf{Velocity(v_2)=18m/s} \end{cases}

_________________________________

We Know the Formula of Kinetic Energy :

 \boxed {\bf{Kinetic  \: Energy =  \dfrac{1}{2}  \times Mass \times  {Velocity}^{2} }}

Ratio of Kinetic Energies of Both Bodies :

 \longrightarrow \sf{K.E._1  : K.E._2}

 \longrightarrow \sf{  \cancel{\dfrac{1}{2}m}{(v_1)}^{2}  :  \cancel{\dfrac{1}{2}m}(v_2) ^{2}  }

\longrightarrow \sf{{(v_1)}^{2}  : {(v_2)}^{2} }

\longrightarrow \sf{{(6)}^{2}  : {(18)}^{2} }

\longrightarrow \sf{36 : 324}

\longrightarrow \large{\boxed{\sf{1: 9}}}

 \therefore Ratio of Kinetic Energies will be 1 : 9.

Similar questions