Math, asked by bdbbdbdb, 3 months ago

8. Two numbers are in the ration3:5. If the sum of the numbers is 248, the
numbers are ?​

Answers

Answered by Anonymous
18

GIVEN:

Ratio of the two numbers = 3:5

Sum of the two numbers = 248

________________________

TO FIND:

The numbers.

________________________

SOLUTION:

We are given that ration of the two numbers is 3:5.

So,

\bigstar {\sf {\pink {Let\ the\ first\ number\ be\ 3x.}}}

\bigstar {\sf {\pink {Let\ the\ second\ number\ be\ 5x.}}}

We are also given that sum of the numbers is 248.

So, the equation formed is:

3x + 5x = 248

8x = 248

\sf {x = \dfrac{248}{8}}

\boxed {\sf {\red {x=31}}}

________________________

VERIFICATION:

On substituting the value of x as 31 in the equation,

3x + 5x = 248

3×31 + 5×31 = 248

93+155 = 248

248 = 248

LHS = RHS

Hence Verified!

________________________

THE NUMBERS ARE:

  • First number = 3x

= 3×31

= 93

  • Second number = 5x

= 5×31

= 155

\boxed {\sf {\orange {The\ two\ numbers\ are\ 93\ and\ 155}}}

Answered by CɛƖɛxtríα
128

_______________________________________

Given:

  • Ratio of two numbers = 3:5
  • Sum of the two numbers = 248

What to do?

  • We're asked to find the two numbers.

Solution:

‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎Let the first number be \mathrm{3x} and the second number be \mathrm{5x}.

So, now we can form an equation;

\Large\underline{\boxed{\tt{\red{3x+5x=248}}}}

Let's start solving the equation formed !

\implies{\mathrm{3x + 5x = 248}}

\implies{\mathrm{8x = 248}}

\implies{\mathrm{x =  \frac{248}{8}}}

  • \Large\underline{\boxed{\tt{\purple{x=31}}}}

Verification:

‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎To verify, substitute 31 in places of 'x' in the equation formed.

\implies{\mathrm{3x + 5x = 248}}

\implies{\mathrm{3 \times 31 + 5 \times 31 = 248}}

\implies{\mathrm{93 + 155 = 248}}

\implies{\mathrm{248 = 248}}

\bold{\implies L.H.S = R.H.S}

  • \large{\underline{\underline{\tt{\blue{Hence,\: verified\:!}}}}}

Answer:

\large{\bold{\red{The\:two\:numbers:-}}}

  • The first number {\sf{(3x)}}:

\longrightarrow{\mathrm{3\times31}}

\longrightarrow{\underline{\underline{\tt{\pink{93}}}}}

  • The second number {\sf{(5x)}}:

\longrightarrow{\mathrm{5\times31}}

\longrightarrow{\underline{\underline{\tt{\pink{155}}}}}

\normalsize\bigstar\underline{\sf{Therefore,\:the\:two\:numbers\:are\:93\:and\:155.}}

_______________________________________

Similar questions