8. Use Sea Euclid's disision Memma de
show that squares anya parasitis
wintegen vis wither of the parem Am, Goth,
4mth
Answers
Step-by-step explanation:
o add comment
Answers
Let 'a' be any positive integer.
On dividing it by 3 , let 'q' be the quotient and 'r' be the remainder.
Such that ,
a = 3q + r , where r = 0 ,1 , 2
When, r = 0
∴ a = 3q
When, r = 1
∴ a = 3q + 1
When, r = 2
∴ a = 3q + 2
When , a = 3q
On squaring both the sides,
[tex] {a}^{2} = 9 {q}^{2} \\ {a}^{2} = 3 \times (3 {q}^{2} ) \\ {a}^{2} = 3 \\ where \: m = 3 {q}^{2} [\tex]
When, a = 3q + 1
On squaring both the sides ,
[tex]{a}^{2} = (3q + 1)^{2} \\ {a}^{2} = 9 {q}^{2} + 2 \times 3q \times 1 + {1}^{2} \\ {a}^{2} = 9 {q}^{2} + 6q + 1 \\ {a}^{2} = 3(3 {q}^{2} + 2q) + 1 \\ {a}^{2} = 3m + 1 \\ where \: m \: = 3 {q}^{2} + 2q}[\tex]
When, a = 3q + 2
On squaring both the sides,
[tex]{a}^{2} = (3q + 2)^{2} \\ {a}^{2} = 3 {q}^{2} + 2 \times 3q \times 2 + {2}^{2} \\ {a}^{2} = 9 {q}^{2} + 12q + 4 \\ {a}^{2} = (9 {q}^{2} + 12q + 3) + 1 \\ {a}^{2} = 3(3 {q}^{2} + 4q + 1) + 1 \\ {a}^{2} = 3m + 1 \\ where \: m \: = 3 {q}^{2} + 4q + 1}[\tex]
Therefore , the square of any positive integer is either of the form 3m or 3m+1.