8)
Verify De Morgan's law for difference, if
U = {natural numbers less than 10),
A = {2, 1,4,5), and
B = {odd number less than 10}.( please send the answer) please
Answers
Given :
- U = {natural numbers less than 10}
- A = {2, 1,4,5}
- B = {odd number less than 10}
To Verify :
- De Morgan's law for difference
Solution :
U = {natural numbers less than 10}
- U = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 }
A = {2, 1,4,5)
- A = {2, 1,4,5)
B = {odd number less than 10}
- B = { 1 , 3 , 5 , 7 , 9 }
So,
U = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 }
A = { 2 , 1 , 4 , 5}
B = { 1 , 3 , 5 , 7 , 9 }
By using De Morgan's law,
(A ∪ B) ' = A ' ∩ B '
★ LHS = (A ∪ B) '
⇒ A ∪ B = { 2 , 1 , 4 , 5} ∪ { 1 , 3 , 5 , 7 , 9 }
⇒ A ∪ B = { 1 , 2 , 3 , 4 , 5 , 7 , 9 }
(A ∪ B) ' = { 6 , 8 }
LHS = { 6 , 8 }
★ RHS = A ' ∩ B '
⇒ A ' = { 3 , 6 , 7 , 8 , 9 }
⇒ B ' = { 2 , 4 , 6 , 8 }
A ' ∩ B ' = { 3 , 6 , 7 , 8 , 9 } ∩ { 2 , 4 , 6 , 8 }
A ' ∩ B ' = { 6 , 8 }
RHS = { 6 , 8 }
LHS = RHS
(A ∪ B) ' = A ' ∩ B '
•°• HENCE VERIFIED . . .
Solution -
We have three sets,
- U = {natural numbers less than 10}
- A = {2, 1, 4, 5}
- B = {odd number less than 10}
⠀
Firstly, we will write all the sets in roaster form
➝ U = {1, 2, 3, 4, 5, 6, 7, 8, 9}
➝ A = {2, 1, 4, 5}
➝ B = {1, 3, 5, 7, 9}
⠀
Now, De Morgan's law states that
⠀⠀⠀⠀⠀⠀☆ (A ∪ B)' = A' ∩ B'
⠀
Firstly, let us find L.H.S
➝ A∪B = {2, 1, 4, 5} ∪ {1, 3, 5, 7, 9}
➝ A∪B = {1, 2, 3, 4, 5, 7, 9}
➝ (A∪B)' = {6, 8}
⠀
Similarly, we will find R.H.S
➝ A' = {3, 6, 7, 8, 9}
➝ B' = {2, 4, 6, 8}
➝ A' ∩ B' = {6, 8}
⠀
We can see that,
⇢ L.H.S = {6, 8}
⇢ R.H.S = {6, 8}
⇢ L.H.S = R.H.S
★ Hence proved ★