Math, asked by Aria48, 3 months ago

8. Which of the following pair of linear equations represent parallel lines ?

(A)2x + 3y + 5 = 0
3x + 2y – 5 = 0

(B) x-y-10= 0
2x –2y + 15 = 0

(C) 2x + 5y +2=0
4x - 10y+4=0

(D) x–y=10
x + y = 14

if you don't know please don't answer, if anyone gives silly or irrevelent answers I will report them.

Answers

Answered by SirVisheshMann
0

Answer:

answer is B

Step-by-step explanation:

x-y-10=0 has slope =1

similarly 2x-2y +15 =0 has slope of -1

so they have same slope this implies they have same inclination from axis which indicates that they are parallel lines.

Answered by varadad25
17

Answer:

The pair of linear equations x - y - 10 = 0 and 2x - 2y + 15 = 0 represents parallel lines.

Option B)

Step-by-step-explanation:

We have given the pairs of linear equations.

We have to find the pair of linear equation which represents parallel lines.

A)

The given linear equations are

2x + 3y + 5 = 0 and 3x + 2y - 5 = 0

Now,

2x + 3y + 5 = 0 - - ( 1 )

Comparing with ax + by + c = 0, we get,

  • a₁ = 2
  • b₁ = 3
  • c₁ = 5

Now,

3x + 2y - 5 = 0 - - ( 2 )

Comparing with ax + by + c = 0, we get,

  • a₂ = 3
  • b₂ = 2
  • c₂ = - 5

Now,

\displaystyle{\sf\:\dfrac{a_1}{a_2}\:=\:\dfrac{2}{3}\:\:\:-\:-\:(\:1\:)}

Now,

\displaystyle{\sf\:\dfrac{b_1}{b_2}\:=\:\dfrac{3}{2}\:\:\:-\:-\:(\:2\:)}

Now,

\displaystyle{\sf\:\dfrac{c_1}{c_2}\:=\:-\:\dfrac{5}{5}}

\displaystyle{\implies\sf\:\dfrac{c_1}{c_2}\:=\:-\:1\:\:\:-\:-\:-\:(\:3\:)}

From equations ( 1 ), ( 2 ) & ( 3 ),

\displaystyle{\pink{\sf\:\dfrac{a_1}{a_2}\:\neq\:\dfrac{b_1}{b_2}\:\neq\:\dfrac{c_1}{c_2}}}

∴ The lines of the given pair of linear equations are intersecting.

─────────────────────────

B)

The given linear equations are

x - y - 10 = 0 and 2x - 2y + 15 = 0

Now,

x - y - 10 = 0 - - ( 1 )

Comparing with ax + by + c = 0, we get,

  • a₁ = 1
  • b₁ = - 1
  • c₁ = - 10

Now,

2x - 2y + 15 = 0 - - ( 2 )

Comparing with ax + by + c = 0, we get,

  • a₂ = 2
  • b₂ = - 2
  • c₂ = 15

Now,

\displaystyle{\sf\:\dfrac{a_1}{a_2}\:=\:\dfrac{1}{2}\:\:\:-\:-\:-\:(\:1\:)}

Now,

\displaystyle{\sf\:\dfrac{b_1}{b_2}\:=\:\dfrac{\cancel{-}\:1}{\cancel{-}\:2}}

\displaystyle{\implies\sf\:\dfrac{b_1}{b_2}\:=\:\dfrac{1}{2}\:\:\:-\:-\:-\:(\:2\:)}

Now,

\displaystyle{\sf\:\dfrac{c_1}{c_2}\:=\:-\:\cancel{\dfrac{10}{15}}}

\displaystyle{\sf\:\dfrac{c_1}{c_2}\:=\:-\:\dfrac{2}{3}\:\:\:-\:-\:(\:3\:)}

From equations ( 1 ), ( 2 ) & ( 3 ),

\displaystyle{\underline{\boxed{\red{\sf\:\dfrac{a_1}{a_2}\:=\:\dfrac{b_1}{b_2}\:\neq\:\dfrac{c_1}{c_2}}}}}

∴ The lines of the given pair of linear equations are parallel.

─────────────────────────

C)

The given linear equations are

2x + 5y + 2 = 0 and 4x - 10y + 4 = 0

Now,

2x + 5y + 2 = 0 - - ( 1 )

Comparing with ax + by + c = 0, we get,

  • a₁ = 2
  • b₁ = 5
  • c₁ = 2

Now,

4x - 10y + 4 = 0 - - ( 2 )

Comparing with ax + by + c = 0, we get,

  • a₂ = 4
  • b₂ = - 10
  • c₂ = 4

Now,

\displaystyle{\sf\:\dfrac{a_1}{a_2}\:=\:\cancel{\dfrac{2}{4}}}

\displaystyle{\implies\sf\:\dfrac{a_1}{a_2}\:=\:\dfrac{1}{2}\:\:\:-\:-\:(\:1\:)}

Now,

\displaystyle{\sf\:\dfrac{b_1}{b_2}\:=\:-\:\cancel{\dfrac{5}{10}}}

\displaystyle{\implies\sf\:\dfrac{b_1}{b_2}\:=\:-\:\dfrac{1}{2}\:\:\:-\:-\:(\:2\:}

Now,

\displaystyle{\sf\:\dfrac{c_1}{c_2}\:=\:\cancel{\dfrac{2}{4}}}

\displaystyle{\implies\sf\:\dfrac{c_1}{c_2}\:=\:\dfrac{1}{2}\:\:\:-\:-\:(\:3\:)}

From equations ( 1 ), ( 2 ) & ( 3 ),

\displaystyle{\green{\sf\:\dfrac{a_1}{a_2}\:\neq\:\dfrac{b_1}{b_2}\:\neq\:\dfrac{c_1}{c_2}}}

∴ The lines of the given pair of linear equations are intersecting.

─────────────────────────

D)

The given linear equations are

x - y = 10 and x + y = 14

Now,

x - y = 10

⇒ x - y - 10 = 0 - - ( 1 )

Comparing with ax + by + c = 0, we get,

  • a₁ = 1
  • b₁ = - 1
  • c₁ = - 10

Now,

x + y = 14

⇒ x + y - 14 = 0 - - ( 2 )

Comparing with ax + by + c = 0, we get,

  • a₂ = 1
  • b₂ = 1
  • c₂ = - 14

Now,

\displaystyle{\sf\:\dfrac{a_1}{a_2}\:=\:\dfrac{1}{1}}

\displaystyle{\implies\sf\:\dfrac{a_1}{a_2}\:=\:1\:\:\:-\:-\:-\:(\:1\:)}

Now,

\displaystyle{\sf\:\dfrac{b_1}{b_2}\:=\:-\:\dfrac{1}{1}}

\displaystyle{\implies\sf\:\dfrac{b_1}{b_2}\:=\:-\:1\:\:\:-\:-\:-\:(\:2\:)}

Now,

\displaystyle{\sf\:\dfrac{c_1}{c_2}\:=\:\dfrac{\cancel{-}\:10}{\cancel{-}\:14}}

\displaystyle{\implies\sf\:\dfrac{c_1}{c_2}\:=\:\cancel{\dfrac{10}{14}}}

\displaystyle{\implies\sf\:\dfrac{c_1}{c_2}\:=\:\dfrac{5}{7}\:\:\:-\:-\:-\:(\:3\:)}

From equations ( 1 ), ( 2 ) & ( 3 ),

\displaystyle{\blue{\sf\:\dfrac{a_1}{a_2}\:\neq\:\dfrac{b_1}{b_2}\:\neq\:\dfrac{c_1}{c_2}}}

∴ The lines of the given pair linear equations are intersecting.

Similar questions