Math, asked by sahithisaisree, 8 months ago

8^x+1=2^x+3 find the value of x

Answers

Answered by BrainlyPopularman
3

GIVEN :

  \\  \implies{ \bold{ {8}^{x + 1} =  {2}^{x + 3}}} \\

TO FIND :

Value of 'x' = ?

SOLUTION :

  \\  \implies{ \bold{ {8}^{x + 1} =  {2}^{x + 3}}} \\

• We know that –

  \\ \:  \:   {\huge{.}} \:  \: { \bold{  {2}^{0} = 1 }} \\

  \\ \:  \:   {\huge{.}} \:  \: { \bold{  {2}^{1} = 2 }} \\

  \\ \:  \:   {\huge{.}} \:  \: { \bold{  {2}^{2} = 4 }} \\

  \\ \:  \:   {\huge{.}} \:  \: { \bold{  {2}^{3} = 8 }} \\

• So that , We can write this as –

  \\  \implies{ \bold{ { ({2}^{3} )}^{x + 1} =  {2}^{x + 3}}} \\

• Using identity –

  \\  \implies{ \bold{ { ({a}^{b} )}^{c} =  {a}^{bc}}} \\

  \\  \implies{ \bold{ { (2)}^{3(x + 1)} =  {2}^{x + 3}}} \\

  \\  \implies{ \bold{ { (2)}^{(3x +3)} =  {2}^{x + 3}}} \\

• Now Let's compare –

  \\  \implies{ \bold{3x +3 =  x + 3}} \\

  \\  \implies{ \bold{3x  - x =  3 -  3}} \\

  \\  \implies{ \bold{2x = 0}} \\

  \\  \implies \large{ \boxed{ \bold{x = 0}}} \\

 \\ \rule{220}{2} \\

Similar questions