Math, asked by ManasviM, 2 months ago

81^(1/log5 (3))+27^(log9(36))+3^(4/log7(9))=​

Attachments:

Answers

Answered by user0888
7

Required to Know

  • Log Rules

\rightarrow \log_{a}b=\dfrac{1}{\log_{b}a} …[1]

\rightarrow \log_{a^{m}}b^{n}=\dfrac{n}{m} \log_{a}{b} …[2]

\rightarrow a^{\log_{a}b}=b …[3]

  • Exponent Rules

\rightarrow (a^{m})^{n}=a^{mn} …[1]

Solution

Given: 81^{(\dfrac{1}{\log_{5}3} )}+27^{(\log_{9}36)}+3^{(\dfrac{4}{\log_{7}9} )}

Using log rule [1],

=81^{(\log_{3}5 )}+27^{(\log_{9}36)}+3^{(4\log_{9}7)}

Using exponent rule [1],

=(3)^{4(\log_{3}5 )}+3^{3(\log_{3^2}6^2)}+3^{(4\log_{3^{2}}7)}

Using log rule [2],

=(3)^{4(\log_{3}5 )}+3^{3(\frac{2}{2} \log_{3}6)}+3^{(\frac{4}{2} \log_{3}7)}

Using log rule [3],

=5^{4}+6^{3}+7^{2}

=625+216+49=\boxed{890}

Hence the required answer is \boxed{890}.

Similar questions