Math, asked by adityapatra1146w, 8 months ago

81^2/729^1-x=9^2x. answer me plz​

Answers

Answered by varadad25
1

Answer:

The value of x is - 1.

Step-by-step-explanation:

We have given that,

\displaystyle{\sf\:\dfrac{81^2}{729^{1\:-\:x}} \:=\:9^{2x}}

We have to find the value of x.

Now,

\displaystyle{\sf\:\dfrac{81^2}{729^{1\:-\:x}} \:=\:9^{2x}}

\displaystyle{\implies\sf\:\dfrac{(\:9^2\:)^2}{(\:9^3\:)^{1\:-\:x}}\:=\:9^{2x}}

We know that,

\displaystyle{\boxed{\pink{\sf\:(\:a^m\:)^n\:=\:a^{m\:\times\:n}\:}}}

\displaystyle{\implies\sf\:\dfrac{9^{2\:\times\:2}}{9^{3\:(\:1\:-\:x\:)}}\:=\:9^{2x}}

\displaystyle{\implies\sf\:\dfrac{9^4}{9^{3\:-\:3x}}\:=\:9^{2x}}

\displaystyle{\implies\sf\:9^{2x}\:\times\:9^{3\:-\:3x}\:=\:9^4}

We know that,

\displaystyle{\boxed{\blue{\sf\:a^m\:\times\:a^n\:=\:a^{m\:+\:n}\:}}}

\displaystyle{\implies\sf\:9^{2x\:+\:(\:3\:-\:3x\:)}\:=\:9^4}

As bases are equal, powers must also be equal.

\displaystyle{\therefore\:\sf\:2x\:+\:(\:3\:-\:3x\:)\:=\:4}

\displaystyle{\implies\sf\:2x\:+\:3\:-\:3x\:=\:4}

\displaystyle{\implies\sf\:2x\:-\:3x\:=\:4\:-\:3}

\displaystyle{\implies\sf\:-\:x\:=\:1}

\displaystyle{\therefore\:\underline{\boxed{\red{\sf\:x\:=\:-\:1\:}}}}

The value of x is - 1.

Similar questions