Math, asked by bhavishyakaswan3, 10 months ago

81. Find a cubic polynomial whose zeroes are 3, and -1.
2​

Answers

Answered by Anonymous
16

\sf\blue{Correct \ Question}

\sf{Find \ a \ cubic \ polynomial \ whose \ zeroes}

\sf{are \ 3, \ -1 \ and \ 2.}

__________________________________

\sf\red{\underline{\underline{Answer:}}}

\sf{The \ required \ cubic \ polynomial \ is}

\sf{x^{3}-4x^{2}+x+6.}

\sf\orange{Given:}

\sf{\implies{Zeroes \ of \ the \ polynomial \ are}}

\sf{3, \ -1 \ and \ 2.}

\sf\pink{To \ find:}

\sf{Cubic \ polynomial \ whose \ zeroes \ are}

\sf{3, \ -1 \ and \ 2.}

\sf\green{\underline{\underline{Solution:}}}

\sf{Let \ \alpha \ be \ 3, \ \beta \ be \ -1 \ and \ \gamma \ be \ 2.}

\sf{Sum \ of \ zeroes=\alpha+\beta+\gamma}

\sf{=3+(-1)+2}

\sf{\therefore{Sum \ of \ zeroes=4...(1)}}

\sf{Sum \ of \ product \ of \ zeroes=\alpha\beta+\alpha\gamma+\beta\gamma}

\sf{=3(-1)+3(2)+2(-1)}

\sf{=-3+6-2}

\sf{\therefore{Sum \ of \ product \ of \ zeroes=1...(2)}}

\sf{Product \ of \ zeroes=\alpha\beta\gamma}

\sf{=3(-1)(2)}

\sf{\therefore{Product \ of \ zeroes=-6...(3)}}

\sf{Cubic \ polynomial}

\sf{\implies{x^{3}-(\alpha+\beta+\gamma)x^{2}+(\alpha\beta+\alpha\gamma+\beta\gamma)x-(\alpha\beta\gamma)}}

\sf{...from \ (1), \ (2) \ and \ 3}

\sf{\implies{x^{3}-4x^{2}+x+6}}

\sf\purple{\tt{\therefore{The \ required \ cubic \ polynomial \ is}}}

\sf\purple{\tt{x^{3}-4x^{2}+x+6.}}

Similar questions