Math, asked by fakekuldeep16, 4 days ago

81. If 5(tan2x - cos2x) = 2cos 2x + 9, then the value of cos4x is :-​

Answers

Answered by ItzSofiya
3

Answer : 7/9 hope itz helpfull to you. drop some thanks

Attachments:
Answered by MysticSohamS
3

Answer:

your solution is as follows

pls mark it as brainliest

Step-by-step explanation:

to \: find : value \: of \: cos4x \\  \\ given \: that \\ 5(tan {}^{2} x - cos {}^{2}x) = 2cos2x  + 9 \\  \\ 5[( sec {}^{2} x - 1 - cos {}^{2} x) = 2(2cos {}^{2} x - 1) + 9 \\  \\ 5[( \frac{1}{cos {}^{2} x} - cos {}^{2}  x - 1)] = 4cos {}^{2} x - 2 + 9 \\  \\ 5[( \frac{1 - cos {}^{4} x - cos {}^{2}x }{cos {}^{2} x} )] = 4cos {}^{2} x + 7 \\  \\ 5 - 5cos {}^{4} x - 5cos {}^{2} x = 4.cos {}^{4} x + 7cos {}^{2} x \\  \\ 9cos {}^{4} x + 12cos {}^{2} x - 5 = 0 \\  \\ 9cos {}^{4} x + 15cos {}^{2} x - 3cos {}^{2} x - 5 = 0 \\  \\ 3cos {}^{2} x(3cos {}^{2} x + 5)  - 1(3cos {}^{2} x + 5) = 0 \\  \\ (3cos {}^{2} x + 5)(3cos {}^{2} x - 1) = 0 \\  \\ cos {}^{2} x =  -  \frac{5}{3}  \:  \: or \:  \: cos {}^{2} x =  \frac{1}{3}  \\  \\ but \: since \: we \: know \: that \\ cosine \: function \: ∈ \: ( - 1,0,1) \\  \\ cos {}^{2} x =  -  \frac{5}{3}  \:  \: is \: absurd

so \: we \: know \: that \:  \\ cos4x = 2cos {}^{2} 2x - 1 \\  = 2.(cos2x ){}^{2}   - 1 \\  = 2.(2cos  {}^{2}  x - 1) {}^{2}  - 1 \\  \\  = 2(2 \times  \frac{1}{3}  - 1) {}^{2}  - 1 \\  \\  = 2( \frac{2 - 3}{3} ) {}^{2}  - 1 \\  \\  = 2( \frac{ - 1}{3} ) {}^{2}  - 1 \\  \\  =  \frac{2}{9}  - 1 \\  \\  =  -  \frac{7}{9}

Similar questions