81(x+1) 2+90(x+1) (y+2) +25(y+2) 2
Answers
Step-by-step explanation:
Factories form of the expression is 81(x+1)^2+90(x+1)(y+2)+25(y+2)^2=(9x+5y+19)(9x+5y+19)81(x+1) 2 +90(x+1)(y+2)+25(y+2) 2
=(9x+5y+19)(9x+5y+19)
Step-by-step explanation:
Given : Expression 81(x+1)^2+90(x+1)(y+2)+25(y+2)^281(x+1) 2 +90(x+1)(y+2)+25(y+2) 2
To find : Factories the expression?
Solution :
The given expression 81(x+1)^2+90(x+1)(y+2)+25(y+2)^281(x+1) 2 +90(x+1)(y+2)+25(y+2) 2
is in the form of a^2+2ab+b^2a 2 +2ab+b 2
in which
a=9(x+1)a=9(x+1)
b=5(y+2)b=5(y+2)
We know, a^2+2ab+b^2=(a+b)^2a 2 +2ab+b 2
=(a+b) 2
Substitute a and b,
(9(x+1))^2+2(9(x+1))(5(y+2))+(5(y+2))^2=((9(x+1))+(5(y+2)))^2(9(x+1)) 2 +2(9(x+1))(5(y+2))+(5(y+2)) 2
=((9(x+1))+(5(y+2))) 2
81(x+1)^2+90(x+1)(y+2)+25(y+2)^2=(9x+9+5y+10)^281(x+1)
2
+90(x+1)(y+2)+25(y+2)
2
=(9x+9+5y+10)
2
81(x+1)^2+90(x+1)(y+2)+25(y+2)^2=(9x+5y+19)^281(x+1) 2 +90(x+1)(y+2)+25(y+2) 2
=(9x+5y+19) 2
81(x+1)^2+90(x+1)(y+2)+25(y+2)^2=(9x+5y+19)(9x+5y+19)81(x+1)
2
+90(x+1)(y+2)+25(y+2)
2
=(9x+5y+19)(9x+5y+19)
Therefore, factories form of the expression is 81(x+1)^2+90(x+1)(y+2)+25(y+2)^2=(9x+5y+19)(9x+5y+19)81(x+1)
2+90(x+1)(y+2)+25(y+2) 2
=(9x+5y+19)(9x+5y+19)