82. The difference between outside and inside surface of a cylindrical metallic pipe 14 cm long is 44 sq cm. If the pipe is made of 99 cu cm of metal, find the outer and inner radii of the pipe.
Answers
EXPLANATION.
Difference between outside and inside surface of a cylindrical pipe 14 cm long is 44 cm².
If pipe is made of 99 cm³ of metal.
As we know that,
Formula of :
Curved surface area of cylinder = 2πrh.
Volume of cylinder = πr²h.
Using this formula in the equation, we get.
Outside surface of a cylinder = 2πRh.
Inside surface of a cylinder = 2πrh.
Height = 14 cm.
⇒ 2πRh - 2πrh = 44.
⇒ 2πh(R - r) = 44.
⇒ 2 x 22/7 x 14 (R - r) = 44.
⇒ 2 x 22 x 2 (R - r) = 44.
⇒ 44 x 2(R - r) = 44.
⇒ 2(R - r) = 1.
⇒ (R - r) = 1/2. - - - - - (1).
Pipe is made of 99 cm³.
⇒ πR²h - πr²h = 99.
⇒ πh(R² - r²) = 99.
⇒ 22/7 x 14(R² - r²) = 99.
⇒ 22 x 2 x (R - r)(R + r) = 99.
⇒ 44(R + r)(R - r) = 99.
Put the value of (R - r = 1/2) in the equation, we get.
⇒ 44(R + r)(1/2) = 99.
⇒ (R + r) x 22 = 99.
⇒ (R + r) = 99/22.
⇒ (R + r) = 9/2. - - - - - (2).
From equation (1) and (2), we get.
Adding equation (1) and (2), we get.
⇒ (R - r) = 1/2. - - - - - (1).
⇒ (R + r) = 9/2. - - - - - (2).
We get,
⇒ 2R = 1/2 + 9/2.
⇒ 2R = 10/2.
⇒ 2R = 5.
⇒ R = 2.5 cm
Put the value of R = 2.5 in equation (2), we get.
⇒ R + r = 4.5.
⇒ 2.5 + r = 4.5.
⇒ r = 4.5 - 2.5.
⇒ r = 2 cm.
Outer radii of pipe = R = 2.5 cm.
Inner radii of pipe = r = 2 cm.
Step-by-step explanation:
Let, external radius = R cm and internal radius =r cm.
Then, outside surface
Inside surface
External volume
Internal volume
On dividing (ii) by (i), we get:
Solving (i) and (iii) , we get, R =2.5 and r=2 .
Hence, outer radius =2.5 cm and inner radius =2 cm.