Math, asked by s7407506532, 5 months ago

83. Base of a right pyramid is a square, length of diagonal of the base is 24V2 m. If the volume of the
pyramid is 1728 cu. m, its height is :​

Answers

Answered by Cynefin
42

Required Answer:

A right pyramid with base square is a Square pyramid whose volume can be calculated by:

 \huge{ \boxed{ \sf{V =  \frac{1}{3} Ah}}}

Where V is the volume,

A is the area of the square base

h is the height of the Square pyramid.

GiveN:

  • Length of diagonal of base = 24√2 m
  • Volume of pyramid = 1728 m³

To FinD:

  • Height of the pyramid?

Step-by-step Explanation:

Area of the square base:

➛ diagonal² / 2 m²

➛ (24√2)² / 2 m²

➛ 24² × 2 / 2 m²

➛ 576 m²

Finding height by using Formula,

➛ 1/3 Ah = Volume

➛ 1/3 × 576 m² × h = 1728 m³

➛ 192h m² = 1728 m³

➛ h = 9 m

Hence,

The height of the square pyramid:

 \huge{ \boxed{ \sf{ \red{9 \: m}}}}


RvChaudharY50: Perfect .
Glorious31: Fantastic !
MisterIncredible: Awesome
Cynefin: Thank you :D
ItzArchimedes: Splendid. !
prince5132: Awesome .
MяƖиνιѕιвʟє: Fabulous
Cynefin: Thank uh :)
Answered by Anonymous
114

\underline{\underline{\sf{\clubsuit \:\:Question}}}

  • Base of a right pyramid is a square, length of diagonal of the base is 24√2 m. If the volume of the  pyramid is 1728 cu. m, it's height is

\underline{\underline{\sf{\clubsuit \:\:Given}}}

  • Base of a right pyramid is a square
  • Length of diagonal of the base = 24√2 m
  • Volume of the  pyramid = 1728 cu. m

\underline{\underline{\sf{\clubsuit \:\:To\:Find}}}

  • Height of pyramid

\underline{\underline{\sf{\clubsuit \:\:Answer}}}

  • Height of the square pyramid is 9m

\underline{\underline{\sf{\clubsuit \:\:Calculations}}}

\boxed{\sf{Volume\:\:of\;\:Pyramid\:\:=\:\:\dfrac{1}{3}\:\times\:Area\:of\:Base\:\times\:Height}}

Area of the base = 1/2 × (Diagnol)²

Area of the base = 1/2 × (24√2 m)²

Area of the base = 1/2 × 24√2 m × 24√2 m

Area of the base = 1/2 × 1152 m²

Area of the base = 576 m²

Keeping the value in Volume of pyramid formula :

\sf{Volume\:\:of\;\:Pyramid\:\:=\:\:\dfrac{1}{3}\:\times\:Area\:of\:Base\:\times\:Height}

\sf{Volume\:\:of\;\:Pyramid\:\:=\:\:\dfrac{1}{3}\:\times\:576\:m^2\:\times\:Height}

\sf{Volume\:\:of\;\:Pyramid\:\:=\:\:\dfrac{576}{3}\:m^2\:\times\:Height}

\sf{Volume\:\:of\;\:Pyramid\:\:=\:\:\ 192\:m^2\:\times\:Height}

\sf{1728\:m^3\:\:=\:\:\ 192\:m^2\:\times\:Height}

\sf{\dfrac{1728\:m^3}{{192\:m^2}}\:\:=\:\:\ \dfrac{192\:m^2\:\times\:Height}{192\:m^2}}

\sf{9m\:\:=\:\:Height}

∴ Height of the square pyramid is 9m


RvChaudharY50: Awesome.
prince5132: Good .
Glorious31: Nice
MisterIncredible: Good
ItzArchimedes: Awesome !
MяƖиνιѕιвʟє: Nice
nikitasingh79: Good...
Anonymous: Fantastic!
amitkumar44481: Good :-)
Similar questions