Math, asked by princejawla21, 1 year ago

84. If 1/3 + 1/2 + 1/x = 4, then the value of x is​

Answers

Answered by CaptainBrainly
6

GIVEN :

1/3 + 1/2 + 1/x = 4

TO FIND :

Value of x

SOLUTION :

1/3 + 1/2 + 1/x = 4

After LCM,

(2x + 3x + 6) / 6x = 4

(5x + 6)/6x = 4

5x + 6 = 24x

6 = 24 - 5x

6 = 19x

x = 6/19

Therefore, value of x is 6/19

Answered by Anonymous
8

Answer :-

6/19

Solution :-

 \sf  \dfrac{1}{3} +  \dfrac{1}{2} +  \dfrac{1}{x} = 4

Transpose 1/3 to RHS.

 \sf \dfrac{1}{2} +  \dfrac{1}{x} = 4 -  \dfrac{1}{3}

Transpose 1/2 to RHS

 \sf \dfrac{1}{x} = 4 -  \dfrac{1}{3}  -  \dfrac{1}{2}

Taking LCM

 \sf \dfrac{1}{x} =  \dfrac{4(6)}{1(6)}  -  \dfrac{1(2)}{3(2)}  -  \dfrac{1(3)}{2(3)}

 \sf \dfrac{1}{x} =  \dfrac{24}{6}  -  \dfrac{2}{6}  -  \dfrac{3}{6}

 \sf \dfrac{1}{x} =  \dfrac{24}{6}  -  \dfrac{5}{6}

 \sf \dfrac{1}{x} =  \dfrac{24 - 5}{6}

 \sf \dfrac{1}{x} =  \dfrac{19}{6}

Reciprocal on both sides

 \sf  \dfrac{x}{1} =  \dfrac{6}{19}

 \sf x =  \dfrac{6}{19}

Verification :-

 \sf  \dfrac{1}{3} +  \dfrac{1}{2} +  \dfrac{1}{x} = 4

 \sf  \dfrac{1}{3} +  \dfrac{1}{2} +  \dfrac{1}{ \frac{6}{19} } = 4

 \sf  \dfrac{1}{3} +  \dfrac{1}{2} + \dfrac{19}{6}  = 4

Taking LCM

 \sf  \dfrac{1(2)}{3(2)} +  \dfrac{1(3)}{2(3)} + \dfrac{19}{6}  = 4

 \sf  \dfrac{2}{6} +  \dfrac{3}{6} + \dfrac{19}{6}  = 4

 \sf  \dfrac{2 + 3 + 19}{6}  = 4

 \sf  \dfrac{24}{6}  = 4

 \sf  4 = 4

Similar questions