88. The minimum value of sinx^6 + cosx^6 is
1
(1)1/16
(2) Zero
(3) 1
(4)1/4
Answers
Answered by
3
Answer:
y= sin^6(x) + cos^6(x).
y =(sin^2x)^3 + (cos^2x)^3
y=(sin^2x+cos^2x)(sin^4x+cos^4x-sin^2x.cos^2x)
y=(1).[ (sin^2x+cos^2x)^2–3.sin^2x.cos^2x]
y= 1 - 3 sin^2x.cos^2x
y = 1 -3(sin x.cos x)^2
y= 1- 3(1/2.sin2x)^2
y = 1 - (3/4).(sin 2x)^2
For minimum value of y , sin2x should be maximum , maximum value of sin 2x =1 or
x=45°.
Minimum value of y= 1 -(3/4).(1)^2
= 1 - 3/4 = 1/4 , Answer.
Answered by
22
Answer:
= 1 - 3/4
= 1/4
Hope it will be helpful ✌️
Similar questions
Math,
4 months ago
English,
4 months ago
English,
4 months ago
Social Sciences,
9 months ago
English,
9 months ago