8a^3-125b^3-6a^2b+150ab^2
Answers
Answered by
2
Answer:
Step-by-step explanation:
Equation at the end of step 1 :
(((8•(a3))+((60•(a2))•b))+(150a•(b2)))+53b3
Step 2 :
Equation at the end of step 2 :
(((8•(a3))+((60•(a2))•b))+(2•3•52ab2))+53b3
Step 3 :
Equation at the end of step 3 :
(((8•(a3))+((22•3•5a2)•b))+(2•3•52ab2))+53b3
Step 4 :
Equation at the end of step 4 :
((23a3 + (22•3•5a2b)) + (2•3•52ab2)) + 53b3
Step 5 :
Checking for a perfect cube :
5.1 Factoring: 8a3+60a2b+150ab2+125b3
.
8a3+60a2b+150ab2+125b3 is a perfect cube which means it is the cube of another polynomial
In our case, the cubic root of 8a3+60a2b+150ab2+125b3 is 2a+5b
Factorization is (2a+5b)3
Final result :
(2a + 5b)3
Similar questions