Math, asked by sahidalam18, 1 year ago

8a^3+27b^3+125c^3-90abc​

Answers

Answered by Anonymous
52

\red {\huge {\underline{ \frak{Your \: answEr : }}}}

 \implies \tt{8 {a}^{3} + 27 {b}^{3}  + 125 {c}^{3}   - 90abc}

\implies \tt{ {(2a)}^{3} +  {(3b)}^{3}   + {(5c)}^{3}  - 3 \times 2a \times 3b \times 5c }

  \scriptsize\blacksquare  \: \bold{ {a}^{3} +  {b}^{3}  +  {c}^{3}   - 3abc = (a + b + c)( {a}^{2}  +  {b}^{2} +  {c}^{2}  - ab - bc - ca) }

 \blacksquare  \: \boxed{ \frak {plugging \: values}}

 \purple{\implies \tt{(2a + 3b + 5c)(4 {a}^{2}  + 9 {b}^{2} + 25 {c}^{2} - 6ab - 15bc - 10ac) } }

\huge{\red{\ddot{\smile}}}

Answered by streetburner
1

Step-by-step explanation:

\bf{\huge\mathcal{\boxed{\rm{\mathfrak\blue{Hey Mate:}}}}}

8a³+27b³+125c³-90abc

= (2a)³ + (3b)³ + (5c)³ -3(2a)(3b)(5c)

We know that :

a³ + b³ + c³ - 3abc = (a+b+c)(a²+b²+c²-ab-bc-ac)

So, 8a³+27b³+125c³-90abc = (2a+3b+5c)(4a² + 9b² + 25c²-6ab-15bc−10ac)

Similar questions