8a cube +27b cube + 64c cube - 72abc
Answers
Answered by
16
factorization of 8a³ + 27b³ + 64c³ - 72 abc ??
As the first three terms seem to be cubes of 2a, 3b, 4c respectively, we can use the formula
(x+y+z)³ = x³ + y³ + z³ + 3x² (y+z) + 3y² (z+x) + 3z² (x+y) + 6xyz
So x³ + y³ + z³ = (x+y+z)³ - [ 3x² (y+z) + 3y² (z+x) + 3z² (x+y) + 6xyz ]
8a³ + 27b³ + 64c³
= (2a+3b+4c)³ - [ 3 4a² (3b+4c) + 3 9b² (4c+2a) + 3 16c² (2a+3b) + 6 2a 3b 4c ]
= (2a+3b+4c)³ - [ 12a² (3b+4c) + 27b² (4c+ 2a) + 48c² (2a+3b) + 144 abc ]
8a³ + 27b³ + 64c³ - 72 abc =
=(2a+3b+4c)³ - [36a²b+48a²c+108b²c+54b²a+96c²a+144c²b+144abc]-72abc
=(2a+3b+4c)³-[(36a²b+48a²c+72abc)+(108b²c+54b²a+72abc)+(96c²a+144c²b+72abc)]
= (2a+3b+4c)³-[12a(3ab+4ac+6bc)+18b(6bc+3ba+4ac)+24c(4ca+6cb+3ab)]
= (2a+3b+4c)³- [12a+18b+24c] [3ab+4ac+6bc]
= (2a+3b+4c) [ (2a+3b +4c)² - 6(3ab+4ac+6bc) ]
= (2a+3b+4c) [ 4a²+9b²+16c²+12ab+24bc+16ac -18ab -24ac -36bc]
= (2a+3b+4c) [ 4a²+9b²+16c²-6ab -12bc - 8ac]
As the first three terms seem to be cubes of 2a, 3b, 4c respectively, we can use the formula
(x+y+z)³ = x³ + y³ + z³ + 3x² (y+z) + 3y² (z+x) + 3z² (x+y) + 6xyz
So x³ + y³ + z³ = (x+y+z)³ - [ 3x² (y+z) + 3y² (z+x) + 3z² (x+y) + 6xyz ]
8a³ + 27b³ + 64c³
= (2a+3b+4c)³ - [ 3 4a² (3b+4c) + 3 9b² (4c+2a) + 3 16c² (2a+3b) + 6 2a 3b 4c ]
= (2a+3b+4c)³ - [ 12a² (3b+4c) + 27b² (4c+ 2a) + 48c² (2a+3b) + 144 abc ]
8a³ + 27b³ + 64c³ - 72 abc =
=(2a+3b+4c)³ - [36a²b+48a²c+108b²c+54b²a+96c²a+144c²b+144abc]-72abc
=(2a+3b+4c)³-[(36a²b+48a²c+72abc)+(108b²c+54b²a+72abc)+(96c²a+144c²b+72abc)]
= (2a+3b+4c)³-[12a(3ab+4ac+6bc)+18b(6bc+3ba+4ac)+24c(4ca+6cb+3ab)]
= (2a+3b+4c)³- [12a+18b+24c] [3ab+4ac+6bc]
= (2a+3b+4c) [ (2a+3b +4c)² - 6(3ab+4ac+6bc) ]
= (2a+3b+4c) [ 4a²+9b²+16c²+12ab+24bc+16ac -18ab -24ac -36bc]
= (2a+3b+4c) [ 4a²+9b²+16c²-6ab -12bc - 8ac]
Answered by
5
Answer:
Hey Friends!!
The Answers For Your Question Is In The Attachment
Attachments:
Similar questions