Math, asked by Mk83, 7 months ago

8b²+c²=(2b+c²)(4b²-2bc²+c4)

Answers

Answered by raja2492012
0

The factorise the given expression a^2-4b^2+a^3-8b^3-(a-2b)^2a

2

−4b

2

+a

3

−8b

3

−(a−2b)

2

is (a-2b)(4b+a^{2}+2ab+4b^{2}).(a−2b)(4b+a

2

+2ab+4b

2

).

Step-by-step explanation:

We have,

a^2-4b^2+a^3-8b^3-(a-2b)^2a

2

−4b

2

+a

3

−8b

3

−(a−2b)

2

To factorise the given expression=?

=(a^2-4b^2)+(a^3-8b^3)-(a-2b)^2=(a

2

−4b

2

)+(a

3

−8b

3

)−(a−2b)

2

=[a^2-(2b)^2]+[a^3-(2b)^3]-(a-2b)^2=[a

2

−(2b)

2

]+[a

3

−(2b)

3

]−(a−2b)

2

=(a+2b)(a-2b)+(a-2b)(a^{2}+2ab+4b^{2})-(a-2b)^2=(a+2b)(a−2b)+(a−2b)(a

2

+2ab+4b

2

)−(a−2b)

2

Using identities,

a^{2}-b^{2} =(a+b)(a-b)a

2

−b

2

=(a+b)(a−b) and

a^{3}-b^{3} =(a-b)(a^{2}+ab+b^{2})a

3

−b

3

=(a−b)(a

2

+ab+b

2

)

Taking (a-2b) as common, we get

=(a-2b)[(a+2b)+(a^{2}+2ab+4b^{2})-(a-2b)]=(a−2b)[(a+2b)+(a

2

+2ab+4b

2

)−(a−2b)]

=(a-2b)(a+2b+a^{2}+2ab+4b^{2}-a+2b)=(a−2b)(a+2b+a

2

+2ab+4b

2

−a+2b)

=(a-2b)(4b+a^{2}+2ab+4b^{2})=(a−2b)(4b+a

2

+2ab+4b

2

)

=(a-2b)(4b+a^{2}+2ab+4b^{2})=(a−2b)(4b+a

2

+2ab+4b

2

)

Hence, the factorise the given expression a^2-4b^2+a^3-8b^3-(a-2b)^2a

2

−4b

2

+a

3

−8b

3

−(a−2b)

2

is (a-2b)(4b+a^{2}+2ab+4b^{2}).(a−2b)(4b+a

2

+2ab+4b

2

).

Similar questions