Math, asked by zihanhusna246, 6 months ago

8cos² x - 2cos 2x = 5​

Answers

Answered by Anonymous
7

\huge\underline\bold\green{answer -}

\sf{8Cos^{2} x - 2Cos2x = 5}

\star\sf{\sf\boxed{Cos2x = 2Cos^{2} x - 1}}

\sf{8Cos^{2} x - 2(2Cos^{2} x - 1) = 5}

\sf{8Cos^{2} x - 4Cos^{2} x + 2 = 5}

\sf{4Cos^{2} x = 5 - 2}

\sf{4Cos^{2} x = 3}

\sf{Cos^{2} x =\dfrac{3}{4}}

\sf{Cosx =\sqrt{\dfrac{3}{4}}}

\sf{Cosx =\dfrac{\sqrt{3}}{2}}

\sf{x = Cos^{-1}(\dfrac{\sqrt{3}}{2})}

\sf{x = Cos^{-1}(Cos60)}

\sf{\small\boxed{x = 60}}

=> Extra Explanation of Cos2x :-

\sf{Cos2x = Cos(x + x)}

We know that -

\sf{Cos(x+y)=Cosx Cosy - Sinx Siny}

So ,

\sf{Cosx Cosx - Sinx Sinx}

\sf{Cos^{2} x - Sin^{2} x}

\sf{Cos^{2} x - (1 - Cos^{2} x)}

\sf{Cos^{2} x - 1 + Cos^{2} x}

\sf{2Cos^{2} x - 1}

Similar questions