Math, asked by KYuvaganeshRemo6484, 1 year ago

8Cr-7C3=7C2 find the value of r

Answers

Answered by Anonymous
24
Check this attachment :-)
Attachments:
Answered by pinquancaro
19

Answer:

The value of r=3.          

Step-by-step explanation:

Given : ^8C_r-^7C_3=^7C_2

To find : The value of r ?

Solution :

We know that,

^nC_r=\frac{n!}{r!(n-r)!}

^8C_r-^7C_3^7C_2

Applying formula,

\frac{8!}{r!(8-r)!}-\frac{7!}{3!(7-3)!}=\frac{7!}{2!(7-2)!}

\frac{8!}{r!(8-r)!}-\frac{7!}{3!4!}=\frac{7!}{2!5!}

\frac{8!}{r!(8-r)!}=\frac{7!}{2!5!}+\frac{7!}{3!4!}

7!(\frac{8}{r!(8-r)!})=7!(\frac{1}{2!5!}+\frac{1}{3!4!})

\frac{8}{r!(8-r)!}=\frac{1}{2!5!}+\frac{1}{3!4!}

\frac{8}{r!(8-r)!}=\frac{3+5}{5!3!}

\frac{8}{r!(8-r)!}=\frac{8}{5!3!}

\frac{1}{r!(8-r)!}=\frac{1}{5!3!}

When we compare and solve, r=3

Similar questions