Math, asked by yash33122, 6 months ago

8f x=45 ‚y=60 find the value of tan (x+y)​

Answers

Answered by PharohX
3

Step-by-step explanation:

 \tan(x + y)  =  \frac{ \tan(x) +  \tan(y)  }{1 -  \tan(x)  \tan(y) }  \\

So put x= 45

and y = 60

 \tan(45 + 60)  =  \frac{ \tan(45) +  \tan(60)  }{1 -  \tan(45) \tan(60)  }  \\   \\ =  \frac{1 +  \sqrt{3} }{(1 - 1 \times  \sqrt{3}) }  \\  \\  =  \frac{1  +  \sqrt{3} }{1 -  \sqrt{3} }  \times ( \frac{1 +  \sqrt{3} }{1  +  \sqrt{3} } ) \\ \\    = \frac{(1 +  \sqrt{3}) ^{2}  }{ {1}^{2}  - ( \sqrt{3} ) ^{2} }   \\  \\ =  ( \frac{1 + 3 + 2 \sqrt{3} }{1 - 3} ) \\  \\  =   - \frac{4 + 2 \sqrt{3} }{2}  \\  \\  =  - (2 +  \sqrt{3} )

Similar questions