Math, asked by Wood5886, 9 months ago

8u^2-16u. Find zeroes of this polynomial

Answers

Answered by amitkumar44481
3

AnsWer :

u = 0 and u = 2.

Solution :

We have, Polynomial.

 \tt \dagger \:  \:  \:  \:  \: 8 {u}^{2}  - 16u

Compare With General Formula.

 \tt \dagger \:  \:  \:  \:  \: a {x}^{2}  + bx + c.

Taking, Expression.

 \tt : \implies 8 {u}^{2}  - 16u = 0.

 \tt :  \implies  8 (u- 2) = 0.

 \tt :  \implies  8  = 0.

Or,

 \tt :  \implies  u - 2 = 0.

 \tt :  \implies  u = 2.

★ Let try With Different method ( Quadratic Formula )

 \tt \dagger \:  \:  \:  \:  \: x =  \dfrac{ - b \pm  \sqrt{ {b}^{2}  - 4ac} }{2a}

Where as,

  • a = 8.
  • b = 16.
  • c =0.

 \tt :  \implies x =  \dfrac{ 16  \pm \sqrt{ {16 }^{2} - 4 \times 8 \times 0 } }{16}

 \tt :  \implies x =  \dfrac{ 16 \pm\sqrt{ 256 } }{16}

 \tt :  \implies x =  \dfrac{ 16  \pm  16   }{16}

Either,

 \tt :  \implies x =  \dfrac{ 16   + 16 }{16}

 \tt :  \implies x =  \dfrac{ 32 }{16}

 \tt :  \implies x =  2.

Or,

 \tt :  \implies x =  \dfrac{ 16    -  16 }{16}

 \tt :  \implies x =  \dfrac{ 0  }{16}

 \tt :  \implies x = 0.

Similar questions