Math, asked by Prajnya5594, 11 months ago

8x^2 + y^2 - 12x - 4xy + 9 = 0 find value of 14x - 5y

Answers

Answered by amitnrw
16

14x - 5y = 6 if 8x²  + y²  - 12x  - 4xy  + 9 = 0

Step-by-step explanation:

8x²  + y²  - 12x  - 4xy  + 9 = 0

=> 4x² + 4x² + y² - 12x - 4xy + 9 =0

=> 4x²  + y² - 4xy  + 4x²  -12x  + 9 = 0

=> (2x - y)²  + (2x - 3)² = 0

=> 2x - 3 = 0

=> x = 3/2

2x - y = 0

=> y = 2x

=> y = 2 * 3/2

=> y = 3

14x - 5y

= 14 * (3/2)  - 5(3)

= 21 - 15

= 6

14x - 5y = 6

Learn More

If 9a^2 + 16b^2 + c^2 + 25 = 24 (a + b) then find 3a+4b+5c.​

brainly.in/question/12371255

4a^2+9b^2+16c^2+1/9a^2+1/16b^2+25c^2=133/30. ;1440a^2b^2c^2=

https://brainly.in/question/13129745

https://brainly.in/question/13193696

Answered by pulakmath007
31

\displaystyle\huge\red{\underline{\underline{Solution}}}

FORMULA TO BE IMPLEMENTED

1. We are aware of the identity that

 {(a + b)}^{2}  =  {a}^{2}  + 2 ab+  {b}^{2}

2. If the sum of squares of two real numbers are zero then they are separately zero

GIVEN

8 {x}^{2}  +  {y}^{2}  - 12x - 4xy + 9 = 0

TO DETERMINE

14x - 5y

EVALUATION

8 {x}^{2}  +  {y}^{2}  - 12x - 4xy + 9 = 0

 \implies \: 4 {x}^{2}   - 4xy +  {y}^{2} + 4 {x}^{2} - 12x   + 9 = 0

 \implies \:  \bigg[ {(2x)}^{2}   - 2 \times 2x \times y +  {(y)}^{2}  \bigg] +   \bigg[ \: {(2x)}^{2} - 2 \times 2x \times 3   +  {(3)}^{2} \bigg] = 0

 \implies \:  {(2x - y)}^{2}   +   {(2x - 3)}^{2}  = 0

Now the sum of the squares of two real numbers are zero then they are separately zero

Hence

2x - y = 0 \:  \:   \: \: and \:   \:  \: \: 2x - 3 = 0

Now

2x - 3 = 0 \:  \:  \: gives \:

2x = 3

 \implies \:  \displaystyle \: x =  \frac{3}{2}

Again

2x - y = 0 \:  \:  \: gives \:  \:

y = 2x

 \implies \:  \displaystyle \: y = 2 \times  \frac{3}{2}

 \implies \:  \displaystyle \: y=  3

RESULT

14x - 5y

 = (14 \times   \displaystyle \:   \frac{3}{2} ) - (5 \times 3)

 = 21 - 15

 = 6

Similar questions