Math, asked by chemistry50551555, 1 month ago

8x-3y+2z=20, 4x+11y-z=33, 6x+3y+12z=35. Solve the equations in 5 steps by Guass-Jacobi method.​

Answers

Answered by Meits
2

Answer:

8x - 3y + 2z = 20

4x - 11y -z = 33

6x + 3y + 12z = 35

Rewrite 1st equation as

8x = 20 + 3y - 2z

x = 1/8 ( 20 + 3y - 2z ) etc as an iterative process to find better and better values for x

Then we have:

x k+1 = 1/8 ( 20 + 3y k - 2z k )

y k+1 = 1/-11 ( 33 - 4x k+1 + z k )

z k+1 = 1/12 ( 35 - 6 x k+1 - 3 y k+1 )

Initial gauss ( x, y, z ) = ( 0, 0, 0 )

1st Approximation

x₁ = 1/8 ( 20 + 3 (0) - 2 ( 0 ) )

= 1/8 ( 20 )

= 2.5

y₁ = 1/-11 ( 33 - 4 ( 2.5 ) + ( 0 ) )

= 1/-11 ( 23 )

= - 2.90909

z₁ = 1/12 ( 35 - 6 ( 2.5 ) - 3 ( - 2.90909 ) )

= 1/12 ( 35 - 15 + 6.72727

= 1/12 ( 26.272727 )

= 2.189394

2nd Approximation

x₂ = 1/8 ( 20 + 3 ( - 2.090909 ) - 2 ( 2.189394) )

= 1/8 ( 20 - 6.272727 - 4.378788 )

= 1/8 ( 9.348485 )

= 1.168561

y₂ = 1/-11 ( 33 - 4 ( 1.168561) + ( 2.189394 ) )

= 1/-11 ( 33 - 4.674244 + 2.189394 )

= 1/-11 ( 30.5155152 )

= - 2.774105

z₂ = 1/12 ( 35 - 6 ( 1.168561 ) - 3 ( - 2.774105 ) )

= 1/12 ( 35 - 7.011366 + 8.322315 )

= 1/12 ( 36.31095 )

= 3.025913

3rd Approximation

x₃ = 1/8 ( 20 + 3 ( -2.774105 ) - 2 ( 3.025913 ) )

= 1/8 ( 5.625861 )

= 0.703233

y₃ = 1/-11 ( 33 - 4 ( 0.703233 ) + ( 3.025913 ) )

= 1/-11 ( 33.212982 )

= - 3. 019362

z₃ = 1/12 ( 35 - 6 ( 0.703233 ) - 3 ( - 3. 019362 ) )

= 1/12 ( 39.83869 )

= 3.319891

Similar questions