Math, asked by ponsheka, 1 year ago

(8x^4-2x^2+6x+5)÷(4x+1) using synthetic division​

Answers

Answered by isyllus
14

Answer:

Quotient: 8x^3-2x^2-\dfrac{3}{2}x+\dfrac{51}{8}

Remainder: -\dfrac{211}{32}

Step-by-step explanation:

In division write dividend and divisor at correct position.

Synthetic division: The divisor writes outside and dividend writes inside.

When write dividend inside according to descending power of x and write 0 for any missing terms.

\dfrac{-1}{4} | 8        0          -2          6        5 |

Step 1: write 0 below 8 and add (8+0)

\dfrac{-1}{4} | 8        0          -2          6        5 |

       0          

       8

Step 2: Multiply 8 with -1/4 and write below next term 0 and add them

\dfrac{-1}{4} | 8        0          -2          6        5 |

         0       -2  

         8       -2

Step 3: Multiply -2 with -1/4 and write below next term -2 and add them

\dfrac{-1}{4} | 8        0          -2          6        5 |

       0       -2          1/2

       8       -2         -3/2

Step 4: Multiply -3/2 with -1/4 and write below next term 6 and add them

\dfrac{-1}{4} | 8        0          -2          6        5 |

       0       -2          1/2        3/8

       8       -2         -3/2      51/8  

Step 5: Multiply 51/8 with -1/4 and write below next term 5 and add them

\dfrac{-1}{4} | 8        0          -2          6            5 |

     0       -2          1/2        3/8     -51/32

     8       -2         -3/2      51/8     -211/32

Quotient: 8x^3-2x^2-\dfrac{3}{2}x+\dfrac{51}{8}

Remainder: -\dfrac{211}{32}

Answered by rameshjanaki1970
2

Answer:

what is the answer. can you please help me for the questions

Similar questions