Math, asked by Namnami, 2 months ago

-8x²+19x+3 split the middle term​

Answers

Answered by aditiprajapati1064
0

Answer:

Step-by-step explanation:

Find x = a where p(a) = 0.

Then (x – a) is the factor of p(x)

Now divide p(x) by (x – a) i.e. (p(x))/((x - a))

And then we factorize the quotient by splitting the middle term.

Answered by 12thpáìn
1

↪-8x²+19x+3

  • The only time it doesn’t work is when the polynomial isn’t factorable using integers at all,

↪-8x²+19x+3 =0

↪8x²-9x-3 =0

On Comparing with ax²+bx+c=0

a=8 , b = -19 , c = -3

By Formula

\sf{~~~~~x = \dfrac{ -b ± \sqrt{b²-4ac}}{2a} }

\sf{~~~~~x = \dfrac{ -( - 19) ± \sqrt{19²-4 \times 8 \times ( - 3)}}{2 \times 8} }

\sf{~~~~~x = \dfrac{ 19 ± \sqrt{361-32 \times ( - 3)}}{16} }

\sf{~~~~~x = \dfrac{ 19 ± \sqrt{361-96}}{16} }

\sf{~~~~~x_1  = \dfrac{ 19  +  \sqrt{457}}{16} }

\sf{~~~~~x_2 = \dfrac{ 19  -  \sqrt{457}}{16} }

OR

~~~~~~\gray{\boxed{~~~~ \frak{-8x²+19x+3 = \bigg(\dfrac{ 19  +  \sqrt{457}}{16}\bigg) \bigg( \dfrac{ 19  -  \sqrt{457}}{16}\bigg)}} }

Similar questions