Math, asked by amritha855, 2 months ago

8x³ + 27y³ + 36x²y + 54x²y factories using identity ( class 9) here hard part is to find which identity we should use.. how to find identity in any expansion form ??​

Answers

Answered by DANGERADITYA3616
1

GO THROUGH THE ATTACHED IMAGE..

Attachments:
Answered by mathdude500
5

Appropriate Question:-

➢ Factorize :

 \red{\rm :\longmapsto\: {8x}^{3} +  {27y}^{3}  + 36 {x}^{2}y + 54 {xy}^{2} }

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\: {8x}^{3} +  {27y}^{3}  + 36 {x}^{2}y + 54 {xy}^{2}

can be rewritten as

\rm \:  =  \:  \:  {(2x)}^{3} +  {(3y)}^{3} + 3 \times  {(2x)}^{2} \times 3y + 3 \times (2x) \times  {(3y)}^{2}

\rm \:  =  \:  \:  {(2x)}^{3} + 3 \times  {(2x)}^{2} \times 3y + 3 \times (2x) \times  {(3y)}^{2}  +  {(3y)}^{3}

We know that,

\underbrace{\boxed{\bf{ {(x + y)}^{3} =  {x}^{3} + 3 {x}^{2}y +  {3xy}^{2} +  {y}^{3}}}}

\rm \:  =  \:  \:  {(2x + 3y)}^{3}

\rm \:  =  \:  \: (2x + 3y)(2x + 3y)(2x + 3y)

Hence,

 \red{\rm :\longmapsto\: {8x}^{3} +  {27y}^{3}  + 36 {x}^{2}y + 54 {xy}^{2}}

 \red{\rm \:  =  \:  \: (2x + 3y)(2x + 3y)(2x + 3y)}

Additional Information :-

➢ Let us take few more examples!!

➢ Factorize the following :-

 \red{\rm :\longmapsto\: {8x}^{3}  -   {27y}^{3}   -  36 {x}^{2}y + 54 {xy}^{2} }

can be rewritten as

\rm \:  =  \:  \:  {(2x)}^{3}  -   {(3y)}^{3}  -  3 \times  {(2x)}^{2} \times 3y + 3 \times (2x) \times  {(3y)}^{2}

\rm \:  =  \:  \:  {(2x)}^{3}  -  3 \times  {(2x)}^{2} \times 3y + 3 \times (2x) \times  {(3y)}^{2}  -  {(3y)}^{3}

We know that

\underbrace{\boxed{\bf{ {(x  -  y)}^{3} =  {x}^{3}  -  3 {x}^{2}y +  {3xy}^{2}  -   {y}^{3}}}}

\rm \:  =  \:  \:  {(2x  -  3y)}^{3}

\rm \:  =  \:  \: (2x  -  3y)(2x  -  3y)(2x  -  3y)

Hence,

 \red{\rm :\longmapsto\: {8x}^{3}  -   {27y}^{3}   -  36 {x}^{2}y + 54 {xy}^{2} }

 \red{\rm \:  =  \:  \: (2x  -  3y)(2x  -  3y)(2x  -  3y)}

➢ Factorize the following :-

 \purple{\rm :\longmapsto\: {125x}^{3} +  {8y}^{3}  + 150 {x}^{2}y + 60{xy}^{2} }

\rm \:  =  \:  \:  {(5x)}^{3} +  {(2y)}^{3} + 3 \times  {(5x)}^{2} \times 2y + 3 \times (5x) \times  {(2y)}^{2}

\rm \:  =  \:  \:  {(5x)}^{3} + 3 \times  {(5x)}^{2} \times 2y + 3 \times (5x) \times  {(2y)}^{2}  +  {(2y)}^{3}

We know,

\underbrace{\boxed{\bf{ {(x + y)}^{3} =  {x}^{3} + 3 {x}^{2}y +  {3xy}^{2} +  {y}^{3}}}}

\rm \:  =  \:  \:  {(5x + 2y)}^{3}

\rm \:  =  \:  \: (5x + 2y)(5x + 2y)(5x + 2y)

Hence,

 \purple{\rm :\longmapsto\: {125x}^{3} +  {8y}^{3}  + 150 {x}^{2}y + 60{xy}^{2} }

 \purple{\rm \:  =  \:  \: (5x + 2y)(5x + 2y)(5x + 2y)}

Similar questions